
aaCCee--iinngg
PPaarraalllleell PPrrooggrraammmmiinngg

A Parallel Programming Tutorial Using the aCe C Language

Version 3

John E. Dorband

Maurice F. Aburdene
Michelle L. McCotter
Andrew J. Marbach

July 2003

This research was funded in part by NASA grant NAG5-10821.

Introduction to aCe

We use this tutorial as a means of introducing a new parallel programming
language called aCe C. Contrary to what one might expect, the purpose of the
tutorial is not to teach yet another programming language; instead, we use aCe
to expound on parallel computing in general. The tutorial in no way assumes to
be a comprehensive guide to parallel computing. Instead, we give a brief
introduction of parallel processing and then use aCe to show the details of a
specific parallel programming language.

Parallel Computing

Concurrent programs are programs that contain multiple processes.
These multiple processes usually have the ability to communicate, and must deal
with synchronization issues. Concurrent programs are further divided into
various other groupings. Experts disagree on specific groupings and definitions,
and for that reason we do not go into the details of different types of concurrent
programs. Instead, we focus on one type of concurrent programs—the parallel
program.

A parallel program typically consists of two or more tasks that execute
concurrently, and that either use shared data or message passing to
communicate. The purpose of a parallel program is to solve a problem (usually
large) in a shorter amount of time than standard programs allow. The basic
philosophy is to divide a large problem into smaller sections. Then, the sections
are assigned to different processors, with each processor being allowed to
complete its assigned portion of the task. Also, each processor is given access
to all the data and software it needs to complete the task. The separate
processors complete their assigned tasks at the same time, thus decreasing the
amount of time required to solve the large problem.

Several factors motivate parallel programming, some because of
advances in the technology industry, and some because of the nature of parallel
programming itself. First of all, advances in hardware components facilitate the
development of more parallel machines. Also, advances in communication
methods better match high-speed computers. Secondly, because of the growing
popularity of parallel programming research, more practical parallel architectures
have been developed. Because more effort has been focused on developments
in parallel programming, more options are now available. Another advantage
comes as a direct result of the second: because more options are available, the
cost of building parallel machines has decreased. Development of standards in

 2

building computer components, also, has decreased the cost of building parallel
computers, because single components can be changed, rather than having to
build machines from scratch every time. An advantage of parallel machines
themselves is that they exhibit higher fault tolerance, meaning that if one
processor goes down, the others keep on working. In a standard one-processor
machine, if a processor goes down, the program halts completely. On top of all
of this, the capabilities of today’s machines are stretched to the limit by
engineering and scientific applications, and building faster processors does not
seem to be solving the problem. In fact, the development of faster processors is
slowing down. There is a fundamental need for faster computers, and standard
machines do not seem to promise adequate solutions.

Parallel computing, while allowing programmers to develop rapid solutions
to large problems, also comes with its share of costs. It requires a substantial
amount of communication and control overhead, potentially slowing computation
down. Also, after having trained our minds to think purely sequentially for the
majority of programming efforts in the past, with parallel programming we must
view problems in a parallel manner. It will take programmers some time to
become acclimated to new methods. However, focusing future efforts on parallel
programming is enticing, because parallel processing seems to enable greater
advances in computing, and it will most likely allow more efficient solutions of
large problems in the long run. So teaching parallel programming becomes very
important.

Classification of Parallel Systems

The most popular taxonomy for parallel systems was created by Flynn [1]
in 1966. It is based on the notion of streams of information flowing into
processors. A stream consists of instructions and data—pieces of information
that either guide operation or are operated on by a processor. In Flynn’s
Taxonomy, the streams are conceptually divided into instructions and data,
regardless of whether the information arrives together or separately. Types of
parallel machines are classified based on the content of these streams—SISD
(single instruction stream, single data stream), SIMD (single instruction stream,
multiple data streams), MISD (multiple instruction streams, single data stream),
and MIMD (multiple instruction streams, multiple data streams). These different
parallel machines are explained as follows.

• SISD—These are conventional serial Von Neumann computers in
which there is only one set of instructions, and thus only one
instruction processing unit. Each arithmetic instruction leads to one
arithmetic operation on an item of data taken from a single stream of
data. The result is a single data stream of logically related arguments
and results.

 3

• SIMD—This type of computer has one instruction-processing unit,
and several data-processing units, sometimes referred to as
processing elements (PEs), with each having its own access to data
storage. This computer thus retains a single stream of instructions, but
has vector instructions that initiate many operations. The instruction-
processing unit is responsible for fetching and interpreting instructions.
When it encounters a data-processing instruction, it issues the
instruction to all PEs (a vector instruction). All PEs then perform the
command using their individual registers, and the result is a data
vector comprised of many pieces of data from each PE, hence multiple
data streams.

• MISD—This type of machine has multiple instructions operating on
a single piece of data, simultaneously. According to Flynn, this class
has received much less attention than the other classes. Other
computing experts argue that pipelined machines are in this category.

• MIMD—These machines have multiple instruction-processing units
for the multiple instruction streams. Several data streams result from
the multiple processors, hence multiple instruction streams, multiple
data streams. Typically, machines of this type have been specifically
designed with parallel programming in mind. In the 1970s, machines
built with more than one processor were designed to perform totally
separate tasks; these were task parallel machines, meaning that
different processors executed different code at the same time.
Machines with processors that execute the same code at the same
time are data parallel machines. Since the 1970s, one focus of
research has been on data parallel machines, i.e. using multiple
processors to execute a single program.

As computer use and development continues, discrepancies arise as to

which category a particular computer belongs. Nevertheless, Flynn’s Taxonomy
remains as a widely accepted means of categorizing parallel machines.

The Parallelism of aCe

The focus language of this tutorial, aCe C, is a superset of ANSI C. aCe
stands for “architecture-adaptive computing environment.” With few exceptions,
code for aCe C, hereon referred to simply as aCe, is derived from ANSI C. This
tutorial begins with the assumption that the reader is familiar with ANSI C.

The concepts behind aCe have been gleaned from such parallel
languages as APL [2], DAP Fortran [3], Parallel Pascal [4], Parallel Forth [5], C*
[6], CM Lisp [7], FGPC [8], and MPL [9]. In contrast to most of these languages,
which express parallelism in terms of the geometry of data, aCe expresses

 4

parallelism in terms of the geometry of execution and control. aCe was designed
to simplify the concept of parallel programming by giving the programmer control
of only the essential features of parallel computing (execution and
communication). All parallel programming models provide computation and
communications operations, yet some models include additional operations such
as synchronization and mutual exclusion (ensuring that data access maintains its
integrity). aCe provides the programmer with the essential elements of
computation and communication, while hiding model-dependent operations such
as synchronization and mutual exclusion in the runtime system. This facilitates
the programmer’s ability to express the algorithm with the highest degree of
parallelism while minimizing the need to be concerned with architecture-
dependent aspects of parallel computing. aCe is architecture-adaptive, because
different virtual architectures may be used for different physical architectures to
improve architecture-dependent performance. Other languages use libraries to
perform system calls for specific architectures; in aCe, system calls are
imbedded in the system. It is in these ideas that aCe has the advantage over
other parallel languages.

aCe assumes that every algorithm is based on an inherent virtual
architecture consisting of one or more bundles of threads. Typically, a C
program has one thread of execution. A thread of execution is the path that a
computer takes through a program while executing the program. In contrast to C
programs, aCe programs consist of many threads of execution. Each of the
threads computes in parallel. Each thread bundle has its own instruction stream
or thread of execution (i.e. SIMD-like execution). That is, the same instruction
stream is applied to all threads within a bundle. Thus aCe is data-parallel,
because threads of a bundle execute common threads of execution. An
individual thread of a bundle does not have to execute all instructions of the
bundle's instruction stream. If a conditional control structure is executed and its
condition is false for a thread, that specific thread does not execute the
corresponding code. Different bundles of threads will most likely execute
different instruction streams (MIMD-like execution). In this, aCe is task-parallel,
because threads of different bundles carry out different threads of execution.

More sophisticated compilers and run-time environments may be able to
infer from the code which portions of the execution thread may be performed
concurrently without conflict. However, it is very difficult to perform this task
automatically. The aCe language allows the programmer to explicitly express
that which can be performed concurrently (i.e. the parallelism), thus eliminating
the need for a compiler to second-guess the intents of the programmer.

The purpose of aCe is to facilitate the development of parallel programs
by allowing programmers to explicitly describe the parallelism of an algorithm.
The goals of aCe are:

• to allow expression of algorithms in an architecture-independent
manner.

 5

• to facilitate the programmer’s ability to port algorithms between diverse
computer architectures.

• to facilitate the programmer’s ability to adapt and implement algorithms
on diverse computing architectures.

• to facilitate the ease of optimization of algorithms on diverse computing
architectures.

• to facilitate development of applications on heterogeneous computing
environments and programming environments for new computer
architectures.

As you explore the different facets of aCe, think about how aCe exhibits
parallelism. You will probably understand aCe the best by doing some of your
own experiments. When questions arise about the implementation of aCe, write
some of your own programs to test the compiler. Does aCe behave as you
expect it should? If so, you understand it; if not, study some more. When you
finish the tutorial, we hope that you have an excellent grasp of the capabilities of
aCe as a language, but more importantly, that you have a new understanding of
what it means for aCe to be a parallel language. In trying to understand broader
concepts of parallel programming, it may be helpful to re-read the introduction
after finishing the tutorial. Also, for those of you whose interest in parallel
computing grows upon completing this tutorial, we include a list of suggested
reading (at the end). Have fun learning!

 6

Table of Contents

Introduction to aCe... 2

Chapter 1: Introducing Threads ... 10

1.1 A First aCe Program ... 10
1.2 Adding Threads to the First Program .. 10
1.3 Multi-dimensional Arrays of Threads... 11
1.4 Bundles of Bundles of Threads ... 13
1.5 A Discussion of Parallel Programming .. 17
1.6 Thread Storage ... 17
1.7 Printing Stored Values .. 19
1.8 Compiling and Executing aCe Programs 20
1.9 Summary... 21

Chapter 2: System Constants... 24

2.1 System Constants: An Initial Description 24
2.2 Thread Identifiers -- $$i and $$ii ... 25
2.3 System Constants for ‘MAIN’... 27
2.4 System Constants in One Dimension.. 29
2.5 System Constants for Bundles of Bundles of Threads 31
2.6 Thread Storage Revisited ... 36
2.7 Summary... 37

Chapter 3: Thread Execution .. 38

3.1 Operations .. 38
3.2 Active and Inactive Threads.. 38
3.3 Execution of Bundles of Bundles of Threads 43
3.4 The Execution Context.. 46
3.5 Input and Output (I/O) ... 51
3.6 Summary... 53

Chapter 4: Thread Communication .. 55

4.1 Thread Communication Within a Bundle of Threads..................... 55
4.2 Communications Path Descriptions .. 59
4.3 Thread Communication Between Different Thread Bundles 60
4.4 Communications Path Descriptions for Communication Between

Bundles ... 65
4.5 Conditional Expressions.. 66
4.6 Summary... 68

 7

Chapter 5: Path Descriptions.. 70

5.1 Definition ... 70
5.2 Absolute Addressing ... 70
5.3 Universal Addressing .. 71
5.4 Relative Addressing .. 74
5.5 Reduction Addressing ... 83
5.6 Summary... 85

Chapter 6: More on Thread Communication ... 87

6.1 Scatter and Gather Operations ... 87
6.2 Pre-computed Paths ... 92
6.3 Using Pre-Computed Paths to Build a Pascal Matrix 95
6.4 Arrays of Paths and Path Pointers .. 98
6.5 Summary... 99

Chapter 7: Routines... 101

7.1 Bundle-Specific Routines .. 101
7.2 Simple Generic Routines .. 105
7.3 Bundle-Specific Routines Revisited .. 107
7.4 Complex Generic Routines ... 110
7.5 The Virtual/Scalar Distinction .. 114
7.6 Summary... 115

Chapter 8: Thread Alignment.. 116

8.1 Virtual Processor Alignment.. 116
8.2 Realignment of Threads with Processors.................................... 116
8.3 Summary... 119

Chapter 9: Applications... 120

9.1 A Review of aCe ... 120
9.2 Building a Binary Tree... 120
9.3 Building a Ring .. 123
9.4 Conclusion .. 128

Suggested Reading .. 129

Appendix A: Standard aCe C Library... 130

A.1 Assert (assert.aHr) .. 130
A.2 ctype (ctype.aHr)... 130
A.3 Error number (errno.aHr) .. 130
A.4 Locale Routines (locale.aHr) ... 130
A.5 Math Routines (math.aHr)... 131
A.6 Scan Functions (scan.aHr).. 131
A.7 Set Jump (setjmp.aHr) .. 131

 8

A.8 Signals (signal.aHr)... 132
A.9 Standard arguments (stdarg.aHr).. 132
A.10 Standard I/O (sdtio.h).. 132
A.11 Standard Library (stdlib.aHr) ... 132
A.12 String Routines (string.aHr)... 133
A.13 Time Routines (time.aHr) .. 133

Appendix B: More Applications – Discrete Cosine Transform................ 130

B.1 One-Dimensional Discrete Cosine Transform............................. 130
B.2 Two-Dimensional Discrete Cosine Transform............................. 130
B.3 Two-Dimensional Discrete Cosine Transform............................. 130
B.4 Two-Dimensional Discrete Cosine Transform......................... 13044
B.5 Two-Dimensional Discrete Cosine Transform............................. 131
B.5 Two-Dimensional Discrete Cosine Transform......................... 13150

Appendix C: More Applications ... 1304
C.1 Parameter Passing.. 1304
C.2 BMP Transformations ... 13055
C.3 BMP and Discrete Cosine Transform...................................... 13058

References .. 1622

 9

Chapter 1: Introducing Threads

1.1 A First aCe Program

The following is an aCe program. Note that it looks very similar to a
standard C program.

/*
 Hello World aCe program

 Maurice F. Aburdene
 John E. Dorband
*/
#include <stdio.aHr>

int main () {
 printf("Hello aCe World\n");
}

Program 1.1: Prints “Hello aCe World” once.

Program 1.1 prints

Hello aCe World

once, as a C programmer would expect. The careful observer may notice that
the extension of the header file in this program is different than the extension for
C programs. This is due to a difference in compilers, which we will discuss in
section 1.6 when we discuss compiling aCe programs.

1.2 Adding Threads to the First Program

Here is a modified version Program 1.1.

/*

 10

 Bundle of Hello Worlds
 aCe program

 Maurice F. Aburdene
 John E. Dorband
*/
#include <stdio.aHr>

threads A[4];

int main () {

A.{ printf("Hello aCe World\n"); }
}

Program 1.2: Creates four ‘A’ threads. Each thread prints “Hello aCe
World” once.

Program 1.2 displays the following output.

Hello aCe World
Hello aCe World
Hello aCe World
Hello aCe World

This happens because of the creation of threads in our program. Before
main(), we create four threads calling them ‘A’. Inside main(), we issue a
command to print “Hello aCe World” for each of the four threads of ‘A’.

aCe and C differ in that C has only one thread of execution, and aCe may
have many threads of execution. Each thread may be referenced by name and
index (discussed in detail in chapter 4). All aCe programs have at least one
thread. “Where was the thread in the first program?” you ask. Every program
has a primary thread that is implicitly named ‘MAIN’. This is important when it
becomes necessary to communicate between the ‘MAIN’ thread and other
threads executing concurrently with the ‘MAIN’. Also note an important
distinction: ‘main()’ (lower case) is the name of a function, and it is not the
same as ‘MAIN’ (upper case).

1.3 Multi-dimensional Arrays of Threads

In the previous section (section 1.2), the bundle ‘A’ is declared as a one-
dimensional array of threads. One of the advantages of aCe, however, is that
the language allows thread bundles to be declared with any number of
dimensions. Like queues, binary trees, arrays, etc. in other languages, this

 11

feature allows a programmer to create structures of thread bundles that logically
fit her program. The statement

threads B[2][3];

declares the bundle ‘B’ to have two dimensions of sizes two and three,
respectively. She could instead use a declaration like

threads B[6];

which has the same number of threads as the previous two-dimensional bundle;
however, she may want to set the threads up in two dimensions because, for her
particular program, the structure makes more sense that way. Here is a visual
image of what is happening with the two-dimensional bundle.

Figure 1.1: A two-dimensional bundle of ‘B’ threads created by the declaration
threads B[2][3];.

Initially, we have one bundle of threads—namely ‘MAIN’—with one thread in the
bundle. When the program creates the ‘B’ threads, the program forks. The ‘B’
threads become children of the parent thread ‘MAIN’, and they exist together in
the same bundle, depicted by the box around the ‘B’ threads. (Note:
Technically, there should be six lines coming from ‘MAIN’, one to each ‘B’ thread.
Since representing a two-dimensional bundle on paper is difficult, the reader will
have to use her imagination to fill in the missing lines.)

Here is a modified version of program 1.2.

/*
 Two-Dimensional Bundle of Hello Worlds
 aCe program

 Maurice F. Aburdene
 John E. Dorband
*/

#include <stdio.aHr>

threads A[4][2];

int main () {
 A.{ printf("Hello aCe World\n"); }

 12

}

Program 1.3: Creates a two-dimensional bundle of threads; each thread prints
“Hello aCe World”.

The ‘threads’ command creates a two-dimensional bundle of threads named
‘A’. In any threads declaration, the number of sets of square brackets indicates
the number of dimensions, and the number inside each set of square brackets
indicates the number of threads in that dimension. In this bundle, the first
dimension has four threads, and the second has two. In total, there are 4x2=8
threads.

When program 1.3 is compiled and run, it produces the following output.

Hello aCe World
Hello aCe World
Hello aCe World
Hello aCe World
Hello aCe World
Hello aCe World
Hello aCe World
Hello aCe World

This demonstrates that no matter how many dimensions a thread bundle
possesses, any command that the program issues on the threads of a particular
bundle is executed on every thread of that bundle. (The only time a thread does
not execute a command that it receives occurs when that thread is inactive. We
elaborate on active and inactive threads in chapter 3.) Note that we list eight
lines of output from program 1.3, each saying “Hello aCe World”, for one of
the eight threads of ‘A’.

Exercise 1.1: How many threads are in the bundle declared as
follows?

threads B[2][7][20];

Solution: There are 2 x 7 x 20 = 280 threads.

1.4 Bundles of Bundles of Threads

In aCe, one can also declare bundles of bundles of threads. Let’s say we
want to create bundle of two threads, called ‘A’, and another bundle of two
threads, called ‘B’. We could do this in the code that follows.

threads A[2];

 13

threads B[2];

Say, however, that we want to set these bundles up so that ‘B’ is a sub-bundle of
‘A’. To do this, we use a nesting pattern in the declaration. We write down the
normal threads declaration for the bundle of threads that we want as the parent
bundle—the ‘A’ threads in this case.

threads A[2];

In between the word ‘threads’ and the name of our bundle of threads (‘A’), we
place a set of curly brackets, like this

threads { } A[2];

Then, we fill in the curly brackets with ‘B[2]’—the name of the bundle of threads
that we want as a sub-bundle of our ‘A’ bundle, followed by the number of
threads (in brackets) that we want in each sub-bundle of ‘B’ threads.

threads {B[2]} A[2];

Thus we have created bundles of threads in a structure that looks something like
the diagram shown in figure 1.2.

Figure 1.2: ‘A’ is a bundle of two threads, and a bundle of bundles of ‘B’
threads.

Note that each sub-bundle of ‘B’ threads contains two threads, and since there
are two sub-bundles of ‘B’ threads (one for each ‘A’ thread), then there is a total
of four ‘B’ threads across the entire bundle of ‘B’ threads.

One can declare any number of bundles and sub-bundles of threads. For
example, we can write the declaration

threads {B[3],C[4]} A[2];

‘A’ is a bundle of bundles of threads. ‘A’ consists of two bundles, each with a
sub-bundle of three ‘B’ threads, and a sub-bundle of four ‘C’ threads. Each
bundle of ‘A’ is basically one ‘A’ thread, three ‘B’ threads, and four ‘C’ threads.
Figure 1.3 is a visual representation of the threads declaration.

 14

Figure 1.3: ‘A’ is a bundle of bundles of threads (‘B’ and ‘C’). ‘A’ is a sub-bundle
of ‘MAIN’, and ‘B’ and ‘C’ are sub-bundles of ‘A’.

As you can see, a bundle of threads can contain any number of sub-

bundles, since the definition of a bundle is recursive. Remember, all bundles are
sub-bundles of the primary bundle ‘MAIN’. We refer to sub-bundles as children,
and to bundles where the sub-bundles come from as parents. The statement

threads {{D[2][3],{F[3]} A[2]} C[2]} E[5];

demonstrates the recursive nature of a bundle declaration. We have the ‘E’
threads as the top-most bundle. Under each ‘E’ thread, there are two ‘C’ threads.
Then, under each ‘C’ thread, there are two ‘A’ threads and six ‘D’ threads (the ‘D’
threads are two-dimensional). Under each ‘A’ thread, there are three ‘F’ threads.
You can test your comprehension of this concept by doing the following exercise.

Exercise 1.2: How many ‘D’ threads result from this threads
declaration?

threads {{D[2][3],C[2]} B[2]} A[2];
How many ‘B’ threads are there? How many
threads (all names) are there total?

Solution: There are 2x3x2x2 = 24 ‘D’ threads, 2x2 = 4 ‘B’ threads,
and 2x3x2x2 + 2x2x2 + 2x2 +2 = 38 threads in all.

Exercise 1.3: Construct a diagram of the threads resulting from
this declaration:

threads {{D[2][3],C[2]} B[2]} A[2];

 15

Solution:

Exercise 1.4: Write the threads declaration indicated by the
following diagrams.
a. Hint: Write down “threads { } X[3];”

first. Then fill in the brackets as you move
“down” the tree, putting in new “levels” from
right to left.

b.

 16

c.

Solution: a. threads {Y[2],Z[3]} X[3];

b. threads {{M[2][2],N[3][2]} L[2]} K[2][2];
c. threads {{D[1][2]} B[2],{E[2],F[3]} C[3]} A[3];

1.5 A Discussion of Parallel Programming

One of the main goals of a parallel program is to solve a problem in a
reduced amount of execution time. This can be done so long as the solution
process does not require absolutely sequential steps.

In aCe, parallelism is expressed by first defining a set of concurrently
executable threads. A group of parallel threads can also be viewed as a bundle
of executing threads or an array of processing elements. These three views will
be treated synonymously. In aCe, a bundle of threads is defined with the
‘threads’ statement. In program 1.2, the statement “threads A[4]” declares
a bundle of executing threads called ‘A’. This statement declares the intent of the
programmer to use four concurrent executions named ‘A’ at some later point in
the code. If the threads created were executed sequentially, instead of
concurrently, the program would take four times as long to complete. Execution
time is reduced greatly when the threads are executed concurrently (in parallel).

1.6 Thread Storage

One of the four main concepts in aCe is storage. In aCe, there is no
global storage, only storage local to each thread. When threads are created,
they must be assigned storage before they can execute any code. Storage is
declared by a standard C declaration, preceded by the name of the bundle of
threads. All threads of a bundle are allocated space for any given declaration.

The following statement allocates an integer ‘store’ for each of the four
threads of bundle ‘A’.

 17

A int store;

A single thread, which we refer to as a processing element (PE), only has direct
access to storage local to itself. So here, each ‘A’ thread can only directly access
its own store variable. A PE can access storage of another PE indirectly, but
we will wait until we discuss thread communication in chapter 4 to elaborate on
indirect access.

Once storage is assigned to a PE, then code may be written that can be
executed by the PE. The following is a sample piece of code that adds the four
values of ‘y’ to the four values of ‘z’ and stores the four results in the four
locations of ‘x’.

threads A[4];
/* Create three integer storage values for each thread of A

*/
A int x=1, y=2, z=3;

int main() {
 A.{ x = y + z; }
}

Here, execution starts with the function ‘main()’ by the single thread

‘MAIN’, which transfers control to the four threads of ‘A’ (via forks). Each ‘A’
thread adds the values of ‘y’ to the values of ‘z’, and stores them into the values
of ‘x’. Then control returns to ‘MAIN’. For parallelism to be useful, the storage of
each thread must contain different values. Above, the four values of ‘x’ are the
same; the same is true for ‘y’ and ‘z’. So the example above is not the most
useful, but it illustrates the idea of thread storage.

There are methods of assigning different values to variables of the same
name, but we do not yet have the tools to do this. Different methods will be
discussed after we introduce the system constants in chapter 2, and when we
talk about thread communication in chapter 4.

There is one other idea to keep in mind. Code belonging to each bundle
of threads is executed on the storage, or data, of each thread in the bundle. All
storage belongs to some specific PE, and can only be acted upon by that PE.
The storage values, ‘x’, ‘y’, and ‘z’ in the preceding code were created only for
the bundle of ‘A’ threads, and not for any other bundle. So ‘MAIN’ does not have
any storage (in the preceding code), and each PE of ‘A’ can only access its own
storage.

 18

1.7 Printing Stored Values

By printing the stored values from the code before, we see how aCe deals
with thread storage. The following program is a modification of the code from
section 1.6.

/*
 Storage and Printing of Bundle of Threads with Data
 aCe program

 Michelle L. McCotter
*/
#include <stdio.aHr>

threads A[4];
/* Create three integer storage values for each thread of A

*/
A int x=1, y=2, z=3;

int main () {
 A.{
 x = y + z;
 /* Command MAIN thread to print header line */
 MAIN.{ printf("x y z\n-----\n"); }
 /* Command each thread to print its stored values */

printf("%d %d %d\n",x,y,z);
}

}

Program 1.4: Initializes and prints storage values for threads.

There are two new ideas here: printing the storage values of each
processing element, and issuing a print command to the ‘MAIN’ thread. First,
observe the output from program 1.4.

x y z

5 2 3
5 2 3
5 2 3
5 2 3

After assigning the sum of ‘y’ and ‘z’ to ‘x’ we issue the following

command.

MAIN.{ printf("x y z\n-----\n"); }

 19

This is a command only to the ‘MAIN’ thread. If you recall from section

1.2, each aCe program has a primary thread that is implicitly named ‘MAIN’. We
can issue commands to the ‘MAIN’ thread as we can any other thread, but
because there is only one thread named ‘MAIN’, whatever command we give to
‘MAIN’ only gets executed. In program 1.4, since we issue a print command to
‘MAIN’, the program prints the output we ask it to (“x y z” on one line, and “---
--“ on the next line), and it only prints that output one time.

After we ask the program to print the header lines, each PE then prints the
values of ‘x’, ‘y’, and ‘z’, each PE’s values per line. Note that all of the ‘x’
variables have the same values, as do ‘y’ and ‘z’.

At this point, the reader may be wondering about concurrent execution. If
the threads of ‘A’ are concurrently executable, meaning that each thread
executes the same line of code at the same time, then how do the PE’s each
print out values on different output lines (making execution seem sequential
instead)? Execution is actually concurrent, and we deal with this issue when we
discuss input/output in chapter 3.

1.8 Compiling and Executing aCe Programs

As mentioned previously, aCe has a different compiler than standard C.
The aCe compiler requires header files for aCe programs to be terminated by
‘.aHr’, and aCe program files to be terminated by ‘.aCe’. (Recall that C header
files are terminated by ‘.h’, and C program files are terminated by ‘.c’.)

To compile an aCe program (assuming the aCe compiler has been
installed on your machine), type “ace <filename>” at the prompt. The
compiler will create an executable for the program named “a.out”. No matter
what the program is named, the aCe compiler, by default, will name the
executable “a.out”.

To execute the program, simply type “a.out” at the prompt.

Exercise 1.5: Using any editor you choose, enter the “Hello World”
program from section 1.1. After you have finished
entering the code, save your file as “hello.aCe”.
Then compile and run your program. The output
should be the same as the output listed in section
1.1.

 20

Exercise 1.6: Repeat exercise 1.5 for any of the other programs
listed so far in this chapter. The expected output for
each program should appear wherever the programs
are located in the chapter.

The aCe compiler allows you to create an executable with a name other

than “a.out” if you wish. Consider an aCe program file named “run.aCe”. To
create an executable named “run”, at the prompt, enter the following:

[<username>@rhino]$ ace run.aCe –o run

This tells the compiler to name the executable “run” instead of “a.out”.

Exercise 1.7: Compile and run any of the programs listed so far in
this chapter, naming the executables something
other than “a.out”.

1.9 Summary

• aCe code is, with minor exceptions, the same as code for standard C.

• All aCe programs have at least one primary thread of execution, called
‘MAIN’. Other threads can be created by issuing a command similar to the
following

threads A[4];

 where ‘A’ is the name of a set of four concurrently executable threads.

• The primary thread of execution, ‘MAIN’, is not the same is the function
‘main()’.

• Threads can have any number of dimensions desired. Each dimension is
indicated by a set of square brackets, and the number of threads in each
dimension is indicated by the number inside the square brackets.

• One can declare bundles of bundles of threads. In fact, due to the
recursive nature of bundles, a bundle can have any number of sub-
bundles.

 21

• A processing element (PE) is another name for a single thread within a
bundle of threads.

• One of the four essential aCe concepts is storage. aCe does not have
global data storage. Each PE must be allocated its own storage before it
can execute any code. Storage is allocated by issuing a command similar
to the following

A int value;

where ‘A’ is the name of the bundle of threads to be allocated storage, and
‘value’ is the name of the data storage to be allocated to each PE.

• A main goal of parallel programming is to reduce the amount of execution
time. This can be done as long as the solution algorithm does not require
sequential execution.

• aCe exhibits parallelism by first defining a bundle of executing threads.
Then, storage is allocated to each thread, and code can be executed on
each thread.

• To execute a command on each thread of a particular bundle, say a
bundle called ‘A’, the following format is used

A.{ /* execution code goes here */ }

 The commands between the curly braces are executed on each thread of
‘A’. So if ‘A’ has four threads, and there is a ‘printf(…)’ command
between the curly braces, the code in the ‘printf(…)’ command is
displayed four times.

• When a command of the following format is issued
MAIN.{ printf(“Print one line.\n”); }

the program will only print “Print one line.” one time. This is
because there is only one primary thread named ‘MAIN’.

• To compile an aCe program, enter the following at the prompt:
[<username>@rhino]$ ace <filename>

 22

The compiler will create an executable named ‘a.out’. To create an
executable with a different name, issue the following command at the
prompt:

[<username>@rhino]$ ace <filename> -o <executableName>

The compiler will create an executable named <executableName>.

• To execute an aCe program, simply enter the name of the executable at
the terminal prompt.

 23

Chapter 2: System Constants

2.1 System Constants: An Initial Description

Understanding some inherent values of threads is helpful before we
elaborate on more complicated aCe concepts. Hence, we discuss the system
constants here. Threads within a bundle are identified by these system-defined
constants. There are two categories under which a thread can be identified:

1. Globally, among all threads of a bundle/sub-bundle
2. Within one dimension of a bundle/sub-bundle

Both of the previous categories have three variables:
1. The number of threads within the category
2. The log of the number of threads within the category (only if the

number is a power of 2)
3. The sequential identifier of the thread within the category

The definitions of the system constants are as follows:

$$Name -- the name of the bundle/sub-bundle of threads
$$D -- the number of dimensions of the bundle/sub-bundle
$$N -- the total number of threads in the particular

bundle/sub-bundle (over all bundles by that same
name)

$$L -- the log base 2 of the total number of threads in the
bundle/sub-bundle (equals –1 if $$N is not a power
of 2)

$$i -- the logical thread identifier; the unique identifier of
the thread with respect to all the threads of the
bundle/sub-bundle

$$ii -- the physical thread identifier (where the thread is
executing within an architecture)

$$Nx[d] -- the number of threads of d-th dimension of the
bundle/sub-bundle

$$Lx[d] -- the log base 2 of the number of threads of d-th
dimension of the bundle/sub-bundle (equals –1 if
$$Nx[d] is not a power of 2)

 24

$$ix[d] -- the logical thread identifier of the thread in the d-th
dimension of the bundle/sub-bundle

2.2 Thread Identifiers -- $$i and $$ii

In later sections, we discuss all of the system constants; however, we will
focus on just two in this section. Although all threads of a particular bundle have
the same name, each thread has two unique numbers that identify it--$$i and
$$ii. $$i is the value of a thread’s logical identifier; it identifies the thread with
respect to the other threads in that same bundle. $$ii is the value of a thread’s
physical identifier; it distinguishes a thread’s execution location in an architecture.
In many cases, $$ii = $$i, because a thread’s physical thread identifier is the
same as its logical one. In a chapter 7, we show examples in which the logical
identifiers have different values than the physical identifiers in a thread bundle.

Let’s look at a simple program that creates a one-dimensional bundle of
threads and displays the values of $$i and $$ii for each thread in the bundle.

/*
 Sample aCe program
 Prints one-dimensional bundle of threads
 Prints the number of each thread in each thread's

location in the bundle

 Michelle L. McCotter
 Maurice F. Aburdene
 John E. Dorband
*/
#include <stdio.aHr>
#define size 4
threads A[size] ;

int main () {
 A.{
 MAIN. {printf ("$$i values\n----------\n");}
 printf (" %d",$$i);
 MAIN. {printf ("\n\n$$ii values\n----------\n");}
 printf (" %d",$$ii);
 MAIN. { printf ("\n"); }
 }

 25

 return 0;
}

Program 2.1: Prints the number of each thread in each thread’s location in the
one-dimensional thread bundle.

Program 2.1 has the following output.

$$i values

 0 1 2 3

$$ii values

 0 1 2 3

Notice that we declare ‘A’ as a one-dimensional array of processing

elements (remember from chapter 1 that an array of processing elements is the
same as a bundle of threads), and the $$i and $$ii values print out as just
that—two bundles, each having one row of four elements. Notice that the value
of $$i is equal to the value of $$ii for each of the threads of ‘A’. As mentioned
before, $$i often has the same value as $$ii for a particular thread in a bundle.
Also observe that the value of the first thread begins with 0, and since there are
four threads, the last value of $$i (or $$ii) is 3.

Now, here’s a program similar to program 2.1, but with a two-dimensional
bundle of threads.

/*
 Sample aCe program
 Prints two-dimensional bundle of threads

Prints the number of each thread in each thread's
location in the bundle

Michelle L. McCotter

 Maurice F. Aburdene
 John E. Dorband
*/
#include <stdio.aHr>
#define size 4
threads A[size][size] ;

int main () {
 A.{
 MAIN.{printf (" $$i values\n---------------\n"); }
 printf (" %2d%c",$$i, ($$ix[0]==(size-1))?'\n':' ');
 /* %2d means there will be at least 2 digits places

printed when $$i prints--this is for lining digits up
nicely; 3rd argument in previous command prints and end

 26

of line character if the thread identifier in dimension
0 is equal to size - 1; else (indicated by ':') it
prints a space */

 MAIN.{printf ("\n $$ii values\n---------------\n");
}

 printf (" %2d%c",$$i, ($$ix[0]==(size-1))?'\n':' ');
 MAIN. { printf ("\n"); }

}
return 0;
}

Program 2.2: Prints the number of each thread in each thread’s location in the
two-dimensional thread bundle.

Here is the output for program 2.2.

 $$i values

 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15

 $$ii values

 0 1 2 3
 4 5 6 7
 8 9 10 11
12 13 14 15

Here, we have two 4x4 arrays, corresponding to our two-dimensional

bundle of threads with four threads in each dimension. Notice that no thread has
the same value of $$i (or $$ii) as another thread. Also notice that $$i = $$ii
again. This is often but not always the case, as we will see in chapter 7.

2.3 System Constants for ‘MAIN’

Let’s take a look at the system constants for ‘MAIN’. The following
program prints out the values for each of the system constants.

/*
 Sample aCe program
 Prints each of the system constants for 'MAIN'

 Michelle L. McCotter
*/

 27

#include <stdio.aHr>

int main () {
 MAIN.{
 printf("System Constants for 'MAIN'\n");
 printf("---------------------------\n");
 printf("$$Name\t= %s\n",$$Name);
 printf("$$D\t= %d\n",$$D);
 printf("$$N\t= %d\n",$$N);
 printf("$$L\t= %d\n",$$L);
 printf("$$i\t= %d\n",$$i);
 printf("$$ii\t= %d\n",$$ii);
 printf("$$Nx[0]\t= %d\n",$$Nx[0]);
 printf("$$Lx[0]\t= %d\n",$$Lx[0]);
 printf("$$ix[0]\t= %d\n",$$ix[0]);
 }
 return 0;
}

Program 2.3: Prints system constants for ‘MAIN’.

When we execute Program 2.3, the following output results:

System Constants for 'MAIN'

$$Name = MAIN
$$D = 1
$$N = 1
$$L = 0
$$i = 0
$$ii = 0
$$Nx[0] = 1
$$Lx[0] = 0
$$ix[0] = 0

The name of ‘MAIN’ is as we would expect it to be—‘MAIN’. $$D = 1 shows
that ‘MAIN’ is one-dimensional, and $$N = 1 shows that there is only one thread
in the bundle. $$L = 0 makes sense, since $$N = 1 = 20. The logical thread
identifier of the single thread within the bundle of threads called ‘MAIN’ ($$i) is 0,
as is the physical identifier ($$ii). The thread identifier of the thread in the 0th
dimension of the bundle ($$ix[0]) is also 0. Because we begin indexing
dimensions at zero, $$Nx[0] refers to the first and only dimension that ‘MAIN’
has; this value is 1, as we would expect. $$Lx[0] = 0 makes sense, since
$$Nx[0] = 1 = 20.

 28

2.4 System Constants in One Dimension

Figure 2.1 displays the system constants for two bundles—‘MAIN’, and a
one-dimensional array of processing elements created by the following
command.

threads A[4];

Figure 2.1: System constants for all bundles of threads created by the
declaration threads A[4]; .

We declare four threads called ‘A’. In figure 2.1, we have two bundles of threads
(indicated by two boxes); one bundle is ‘MAIN’, and the other bundle, which is
also a sub-bundle of ‘MAIN’, is ‘A’. The first digit under each ‘A’ thread
represents the value for $$i, the second digit represents the value for $$ii, and
the third digit represents the value for $$ix[0] (the thread identifier of the
thread in the 0th dimension; remember that dimensions begin counting at zero,
and not at one). These three system constants are listed out individually for each
thread in the bundles (‘MAIN’ and ‘A’), because they are not always equal to each
other, and each thread within a particular bundle has a different value for each of
these constants. Each of these threads have equal values for $$i (also $$ii)
and $$ix[0], because the threads exist in one dimension. As the dimensions
increase, which we see in section 2.5, these values become more interesting. In
the lower portion of figure 2.1 are two lists of system constants, one for ‘MAIN’,
and one for ‘A’. These constants are only listed once, because they are the
same for each of the threads in a particular bundle.

 29

Exercise 2.1: Write an aCe program that creates a one-
dimensional bundle of two threads. You can start
with the program listed in section 2.3. Print out the
system constants for each thread in the bundle.
(You can print out both values of $$Name at a time,
then both values of $$D, etc.) Keep in mind that if
you would like something to print out only once, you
can issue the command

MAIN.{ printf(/*print code here */); }

Try to write the program without looking at the
solution. If you get stuck, look to the solution for
help, but do your best to figure it out on your own.

Solution:

/*
 Sample aCe program
 Prints each of the system constants for all

threads

 Michelle L. McCotter
*/
#include <stdio.aHr>
threads A[2];

int main () {
 MAIN.{
 printf("System Constants for 'MAIN'\n");
 printf("---------------------------\n");
 printf("$$Name\t= %s\n",$$Name);
 printf("$$D\t= %d\n",$$D);
 printf("$$N\t= %d\n",$$N);
 printf("$$L\t= %d\n",$$L);
 printf("$$i\t= %d\n",$$i);
 printf("$$ii\t= %d\n",$$ii);
 printf("$$Nx[0]\t= %d\n",$$Nx[0]);
 printf("$$Lx[0]\t= %d\n",$$Lx[0]);
 printf("$$ix[0]\t= %d\n",$$ix[0]);
 }

 A. {
 MAIN. {
 printf("\nSystem Constants for 'A'\n");
 printf("------------------------\n");
 printf("$$Name\t=");
 }
 printf(" %s",$$Name);
 MAIN.{ printf("\n$$D\t="); }
 printf(" %d",$$D);

 30

 MAIN.{ printf("\n$$N\t="); }
 printf(" %d",$$N);
 MAIN.{ printf("\n$$L\t="); }
 printf(" %d",$$L);
 MAIN.{ printf("\n$$i\t="); }
 printf(" %d",$$i);
 MAIN.{ printf("\n$$ii\t="); }
 printf(" %d",$$ii);
 MAIN.{ printf("\n$$Nx[0]\t="); }
 printf(" %d",$$Nx[0]);
 MAIN.{ printf("\n$$Lx[0]\t="); }
 printf(" %d",$$Lx[0]);
 MAIN.{ printf("\n$$ix[0]\t="); }
 printf(" %d",$$ix[0]);
 MAIN.{ printf("\n"); }
 }
 return 0;
}

Program 2.4: Solution to exercise 2.1. Prints out system constants for all
threads.

Exercise 2.2: Enter the program listed in the solution to exercise
2.1. Change the threads declaration so that it is
two-dimensional. Execute the program, and study
the output. What do you notice?

Exercise 2.3: Repeat exercise 2.2 for a threads declaration of
three dimensions. Use different numbers of threads
in each dimension.

2.5 System Constants for Bundles of Bundles of Threads

Here is a visual example for the following threads declaration.

threads {B[3][2]} A[2];

 31

Figure 2.2: System constants for all bundles of threads created by the
declaration threads {B[3][2]} A[2]; .

You should understand most of these constants by now. We are choosing

to point out a few things that appear here and not in previous examples. In aCe,
as in standard C, the compiler indexes the dimensions of an array from right to
left. For the ‘B’ threads, dimension 0 is the dimension with two threads, and
dimension 1 is the dimension with three threads. Observe that $$L=–1. This is
because the total number of threads of ‘A’ is six, and six is not a power of two.
Also, $$Lx[0]=–1, because $$Nx[0]=3, and three is not a power of two.
$$Lx[1]=1, because $$Nx[0]=2, and 2=21. Even though we named the rows
first and columns second when we create the ‘B’ threads, (i.e. B[3][2] for 3
rows and 2 columns), $$ix[0] refers to the column index for each ‘B’ thread,
and $$ix[1] refers the row index. This convention may seem contrary to
intuition, but it is the method that standard C uses to implement arrays. In C, the
least significant dimension is furthest to the right; likewise, the leftmost dimension
is the most significant. The last item we wish to draw your attention to is
$$ix[2]. This constant is undefined because ‘A’ has two dimensions; if you
recall correctly, dimensions are counted beginning with zero, so even though

 32

there are two dimensions, $$ix[2] does not make sense because there is no
dimension with index two.

Exercise 2.4: Write a program to print out the system constants
depicted in figure 2.2. For now, when issuing
commands to the ‘B’ threads, use the following
syntax.

A.{
 /* commands to ‘A’ threads */
}
B.{
/* commands to ‘B’ threads */
}

In chapter 3, we discuss the possibility of using
other syntax when giving commands to bundles of
threads.

Solution:

/*
 Sample aCe program
 Creates 2 bundles of threads
 Prints each of the system constants for all

threads

 Michelle L. McCotter
*/
#include <stdio.aHr>
threads {B[3][2]} A[2];

int main () {

 MAIN.{
 printf("System Constants for 'MAIN'\n");
 printf("---------------------------\n");
 printf("$$Name\t= %s\n",$$Name);
 printf("$$D\t= %d\n",$$D);
 printf("$$N\t= %d\n",$$N);
 printf("$$L\t= %d\n",$$L);
 printf("$$i\t= %d\n",$$i);
 printf("$$ii\t= %d\n",$$ii);
 printf("$$Nx[0]\t= %d\n",$$Nx[0]);
 printf("$$Lx[0]\t= %d\n",$$Lx[0]);
 printf("$$ix[0]\t= %d\n",$$ix[0]);
 }

 A. {
 MAIN. {
 printf("\nSystem Constants for 'A'\n");

 33

 printf("------------------------\n");
 printf("$$Name\t=");
 }
 printf(" %s",$$Name);
 MAIN.{ printf("\n$$D\t="); }
 printf(" %d",$$D);
 MAIN.{ printf("\n$$N\t="); }
 printf(" %d",$$N);
 MAIN.{ printf("\n$$L\t="); }
 printf(" %d",$$L);
 MAIN.{ printf("\n$$i\t="); }
 printf(" %d",$$i);
 MAIN.{ printf("\n$$ii\t="); }
 printf(" %d",$$ii);
 MAIN.{ printf("\n$$Nx[0]\t="); }
 printf(" %2d",$$Nx[0]);
 MAIN.{ printf("\n$$Lx[0]\t="); }
 printf(" %2d",$$Lx[0]);
 MAIN.{ printf("\n$$ix[0]\t="); }
 printf(" %2d",$$ix[0]);
 MAIN.{ printf("\n"); }
 }

 B.{
 MAIN.{
 printf("\nSystem Constants for 'B'\n");
 printf("------------------------\n");
 printf("$$Name\t=");
 }
 printf(" %s",$$Name);
 MAIN.{ printf("\n$$D\t="); }
 printf(" %2d",$$D);
 MAIN.{ printf("\n$$N\t="); }
 printf(" %2d",$$N);
 MAIN.{ printf("\n$$L\t="); }
 printf(" %2d",$$L);
 MAIN.{ printf("\n$$i\t="); }
 printf(" %2d",$$i);
 MAIN.{ printf("\n$$ii\t="); }
 printf(" %2d",$$ii);
 MAIN.{ printf("\n$$Nx[0]\t="); }
 printf(" %2d",$$Nx[0]);
 MAIN.{ printf("\n$$Nx[1]\t="); }
 printf(" %2d",$$Nx[1]);
 MAIN.{ printf("\n$$Lx[0]\t="); }
 printf(" %2d",$$Lx[0]);
 MAIN.{ printf("\n$$Lx[1]\t="); }
 printf(" %2d",$$Lx[1]);
 MAIN.{ printf("\n$$ix[0]\t="); }
 printf(" %2d",$$ix[0]);
 MAIN.{ printf("\n$$ix[1]\t="); }
 printf(" %2d",$$ix[1]);
 MAIN.{ printf("\n"); }
 }

 34

 return 0;
}

Program 2.5: Solution to exercise 2.4. Prints out system
constants for all threads. (There are bundles of
bundles of threads in this program.)

Exercise 2.5: For each threads declaration listed in parts (a)
through (f), determine the values of the system
constants listed in (i) through (viii). Do this for the
thread specified by name and index number ($$i).

a. threads B[1][2];
 (thread ‘B’, $$i = 1)
b. threads B[2];
 (thread ‘B’, $$i = 1)
c. threads A[2][2][2];
 (thread ‘A’, $$i = 7)
d. threads X[3][4];
 (thread ‘X’, $$i = 9)
e. threads {{D[2],C[3]} B[2]} A[3];
 (thread ‘B’, $$i = 2)
f. threads {L[3][3],K[3][4],J[2]} M[2];
 (thread ‘K’, $$i = 19)

i. $$N
ii. $$D
iii. $$L
iv. $$Nx[0]
v. $$Nx[1]
vi. $$ix[0]
vii. $$ix[1]
viii. $$ix[2]

Solution:
 a b c d e f
i 2 2 8 12 6 24

ii 2 1 3 2 1 2

iii 1 1 3 -1 -1 -1

iv 2 2 2 4 2 4

v 1 0 2 3 0 3

vi 1 1 1 1 0 3

 35

vii 0 0 1 2 1 1

viii undef undef 1 undef undef undef

2.6 Thread Storage Revisited

In section 1.7, we talked about thread storage, and assigning values the
variables of each thread. In that section, we only had the tools to assign the
same value to a particular variable for all threads. Now, using the system
constants, here is an example program that assigns different values to the
particular thread variables.

/*
 Sample aCe Program
 Creates a bundle of threads
 Creates storage for each thread
 Uses system constants to give storage variables

different values for each thread

 Michelle L. McCotter
*/
#include <stdio.aHr>
threads A[5];

int main () {
 A. {
 int a,b,c;
 a = $$i;
 b = ($$i+1)%$$N;
 c = (a + b)%$$N;
 /* %$$N assures that b and c will have only values

0,1,2,3, or 4 */
 printf("Thread %d: a = %d, b = %d, c = %d\n",

$$i,a,b,c);
 }

 return 0;
}

Program 2.6: Uses system constants to give storage variables different values
for each thread.

The program output shows that variables of the same name were each assigned
different values. So all the ‘a’ variables have different values, as do the ‘b’ and
‘c’ variables.

 36

Thread 0: a = 0, b = 1, c = 1
Thread 1: a = 1, b = 2, c = 3
Thread 2: a = 2, b = 3, c = 0
Thread 3: a = 3, b = 4, c = 2
Thread 4: a = 4, b = 0, c = 4

In chapter 4, after we discuss thread communication, we show another method of
assigning different values to a particular variable of a thread bundle.

2.7 Summary

• Each thread that is created has a set of system-defined constants.

• The values of $$i and $$ii are unique to each thread within a bundle.

• Often, the value of $$i (the logical identifier of a single thread) is the
same as the value of $$ii (the physical identifier of a single thread) for a
particular thread within a bundle/sub-bundle.

• Thread identifiers and thread dimensions begin indexing at zero.

• In aCe, as in standard C, the compiler indexes the dimensions of an array
from right to left. Even though we name the rows first and columns
second when we create a two-dimensional bundle of threads, $$ix[0]
refers to the column index for each thread, and $$ix[1] refers to the row
index.

 37

Chapter 3: Thread Execution

3.1 Operations

One of the four essential concepts of aCe is execution. We have
introduced storage and system constants. In this chapter, we will focus on
execution and in chapter 4 we will address communication. All operations that
can be executed by the thread ‘MAIN’ may be performed concurrently by any
bundle of threads. ‘MAIN’ can perform most operations that are in standard C;
the only operation supported by ANSI C, but not by aCe is ‘goto’.

Those programmers who are already familiar with standard C should have
an excellent grasp of what can generally be executed in aCe. Because we are
assuming that people reading this tutorial are already familiar with standard C,
we will not go into general executable statements. Due to the concept of
threads, however, there is a difference in code execution for aCe; this difference
is due to the option of having active and inactive threads. When active threads
within a bundle execute a command, all of the active threads execute the same
command at the same time. Actually, aCe gives the illusion that the same
command is executed by all active threads at the same time. However, actual
execution in aCe may not be, and probably is not, absolutely concurrent. The
important feature of aCe is that when active threads within a bundle execute a
command, the programmer has the illusion that all of the active threads execute
the same code at the same time. Also, the results of execution are the same as
if the program had executed each command for a bundle of threads concurrently.
This enables aCe to be used on machines with a variety of processors; even on
single-processor machines, aCe gives the illusion of absolutely concurrent
execution. Concurrent execution for bundles of threads is a particular attribute of
aCe that distinguishes it from standard C.

3.2 Active and Inactive Threads

In a data-parallel context, we view conditional execution as the activation
and deactivation of threads for which the current code does not apply, rather than
as the action of skipping the execution of code that does not apply. Conditional
execution on a bundle of threads deactivates all threads for which the condition is
false. The inactive threads remain inactive until either the conditional structure is

 38

exited or reactivated, as in the case of switch structures or continue statements.
A conditional statement only applies to the threads that were active when the
statement was entered.

We show active threads and inactive threads with the use of an example.
In the code that follows

B int a,b,z;
B.{
 if (z) {
 a = b;
 }
}

some threads of ‘B’ will copy ‘b’ to ‘a’ while some will not, depending on whether
or not ‘z’ is true for each ‘B’ thread. During the copy operation, all threads for
which ‘z’ is true are said to be active, and all threads for which ‘z’ is false are
said to be inactive.

Within the context of a segment of code for bundle ‘B’, all active threads of
‘B’ execute the code, while all inactive threads remain idle. Initially, all threads of
all bundles are active, and each bundle only executes code explicitly designated
for that bundle. Code is explicitly designated for a bundle of threads via
execution contexts, which we discuss in section 3.4.

Conditional statements are used to make some threads of a bundle active
or inactive for a portion of code. The if statement may deactivate some of the
active processing elements (individual threads) until the corresponding else is
reached; then the original PE’s are restored, and those that had been active are
deactivated. A loop structure (for, while, do-while) deactivates more and
more of the active threads as the threads fail the loop condition. A break
statement deactivates all active threads until the corresponding loop or switch
structure has been exited. A continue statement deactivates all active threads
until only the current iteration of the loop has been completed. A return
statement deactivates all active threads until all threads that entered the routine
return or complete the routine.

The following program makes use of active and inactive threads.

/*
 Sample aCe Program
 Creates one-dimensional bundle of threads
 Demonstrates making threads inactive

 Michelle L. McCotter
*/
#include <stdio.aHr>
/* define values to make active/inactive idea more clear */
#define ACTIVE 1
#define INACTIVE 0

 39

threads A[4];

int main() {
 int counter = 0;
 A.{
 int state = ACTIVE;
 int a = 0;
 /* all threads are initially active */

 while (state == ACTIVE) {
 MAIN.{ printf("\nLoop # %d\n--------\n",counter);}
 printf("Thread %d is active.\n",$$i);
 MAIN.{ counter++; }
 if ((a-($$i)) == 0)
 state = INACTIVE;
 a++;
 }

 MAIN.{ printf("\nWhile loop finished\n”
 “-------------------\n"); }
 printf("Thread %d is active.\n",$$i);
 }

 return 0;
}

Program 3.1: Creates a bundle of threads and uses a while statement to
make more and more of the threads inactive.

Program 3.1 creates four ‘A’ threads. As with all aCe programs, the
threads are initially active. One must write some kind of conditional code to
make them inactive. In program 3.1, we use a while statement to do this. As
the threads execute through the loop, we “turn off” more and more of them. You
can see the effect this has in the program’s output that follows.

Loop # 0

Thread 0 is active.
Thread 1 is active.
Thread 2 is active.
Thread 3 is active.

Loop # 1

Thread 1 is active.
Thread 2 is active.
Thread 3 is active.

 40

Loop # 2

Thread 2 is active.
Thread 3 is active.

Loop # 3

Thread 3 is active.

While loop finished

Thread 0 is active.
Thread 1 is active.
Thread 2 is active.
Thread 3 is active.

As we stated, all threads are initially active. Executions through the while loop
make more threads inactive. When the while loop is finished, all threads are
active again, even though we do not explicitly reassign ‘ACTIVE’ to ‘state’.
Actually, the ‘state’ variable is just used as a condition for the while loop; the
variable itself does not indicate whether or not a thread is active. A thread is
active if it executes the line of code at the current location of the bundle of
threads. We know that the four ‘A’ threads are active after the while loop
finishes, because all threads print out that they are active, and a thread must be
active to execute code.

In the output above, it might seem that we could have made it more clear
which threads were inactive in a particular loop. We might have done this, say,
by printing out which threads were inactive, instead of just printing the active
ones. However, for a thread to print, it must be active. So we cannot use a
conditional statement to command the inactive threads to print. Only active
threads can print.

Try the following exercises to test your comprehension of active and
inactive threads.

Exercise 3.1: The following program uses a loop to make threads
inactive. For each iteration through the loop, list the
active threads (by $$i).

#include <stdio.aHr>
threads A[4];

int main() {
 int counter = 0;
 A int i;
 A.{
 for (i=1; i<5; i++) {
 MAIN.{
 printf("\nLoop # %d\n"

 41

 "---------\n",counter);
 }
 if (($$i)%i != 0)
 printf("$$i=%d\n",$$i);
 MAIN.{ counter++; }
 }
 }
 return 0;

 }

Solution:
Loop # 0 Loop # 1 Loop # 2 Loop # 3
none $$i = 1 $$i = 1 $$i = 1
 $$i = 3 $$i = 2 $$i = 2
 $$i = 3

Exercise 3.2: Write a program that creates a bundle of five
threads. Then, use successive iterations through a
conditional loop to make each thread of the bundle
the only active thread for that iteration. For each
iteration, print out the loop number and the logical
identifier of the active thread.

Solution:

/*
 Sample aCe Program
 Creates one-dimensional bundle of threads
 Demonstrates making threads inactive

 Michelle L. McCotter
*/
#include <stdio.aHr>
#define size 5
threads A[size];

int main() {
 int counterMAIN = 0;
 A int i;
 A.{
 /* all threads are initially active */
 for (i=0; i < size; i++) {
 MAIN.{ printf("\nLoop # %d\n"
 "--------\n",counterMAIN); }
 if ($$i == i)
 printf("Thread %d is active.\n",$$i);
 MAIN.{ counterMAIN++; }
 }

 MAIN.{ printf("\nFor loop finished\n"
 "-------------------\n"); }

 42

 printf("Thread %d is active.\n",$$i);
 }
 return 0;
}

Program 3.2: Solution to exercise 3.2. Uses a for loop to make one thread of
the ‘A’ threads active at a time; does this for each ‘A’ thread.

3.3 Execution of Bundles of Bundles of Threads

A single thread controls whether or not its children (its sub-bundles) can
be active. If a thread of a bundle becomes inactive, all of that thread’s children
become inactive. If all of the thread’s children become inactive, then the parent
thread also becomes inactive. We show both of these cases in this section, one
by example, and one with exercise 3.3.

Study the following program (a modified version of program 3.1)

/*
 Sample aCe Program
 Demonstrates how a parent thread controls its sub-

bundles
 If the parent is inactive, all children become inactive.

 Michelle L. McCotter
*/
#include <stdio.aHr>
/* define values to make active/inactive idea more clear */
#define ACTIVE 1
#define INACTIVE 0
threads {B[2]} A[3];

int main() {
 int counter = 0;
 A.{
 int state = ACTIVE;
 int a = 0;
 /* all threads are initially active */

 while (state == ACTIVE) {
 MAIN.{printf("\nLoop # %d\n--------\n",counter);}
 printf("Thread A[%d] is active.\n",$$i);
 B.{ printf("Thread B[%d] is active.\n",$$i); }
 MAIN.{ counter++; }
 if ((a-($$i)) == 0)
 state = INACTIVE;

 43

 a++;
 }

 MAIN.{ printf("\nWhile loop finished\n"
 "-------------------\n"); }
 printf("Thread A[%d] is active.\n",$$i);
 B.{ printf("Thread B[%d] is active.\n",$$i); }

 }

 return 0;
}

Program 3.3: Demonstrates how parent threads control their sub-bundles. If a
parent thread becomes inactive, then all of its sub-bundles
become inactive.

In program 3.3, we declare a bundle of three ‘A’ threads, with each ‘A’
thread having a bundle of two ‘B’ threads. You can see this in the following
diagram.

Figure 3.1: The bundles of threads declared by threads {B[2]} A[3];

You can see in the output from program 3.3 that when one of the ‘A’ threads
becomes inactive, then both of its ‘B’ threads also become inactive.

Loop # 0

Thread A[0] is active.
Thread A[1] is active.
Thread A[2] is active.
Thread B[0] is active.
Thread B[1] is active.
Thread B[2] is active.
Thread B[3] is active.
Thread B[4] is active.
Thread B[5] is active.

 44

Loop # 1

Thread A[1] is active.
Thread A[2] is active.
Thread B[2] is active.
Thread B[3] is active.
Thread B[4] is active.
Thread B[5] is active.

Loop # 2

Thread A[2] is active.
Thread B[4] is active.
Thread B[5] is active.

While loop finished

Thread A[0] is active.
Thread A[1] is active.
Thread A[2] is active.
Thread B[0] is active.
Thread B[1] is active.
Thread B[2] is active.
Thread B[3] is active.
Thread B[4] is active.
Thread B[5] is active.

Remember that the word ‘ACTIVE’ in the program is just used as an argument in
the conditional statement. It is not actually used to make a thread active. A
thread is active if it passes the conditional statement and executes the code
inside the conditional block. If execution of a line of code does not take place,
the particular thread is inactive. When the conditional block ends, all threads
become active again. In program 3.2, we are only concerned with making the ‘A’
threads active and inactive, to see how they affect the ‘B’ threads; thus we do not
use the ‘ACTIVE’, ‘INACTIVE’, or ‘state’ variables with the ‘B’ threads.

Program 3.3 shows how making a parent thread inactive causes its
children to be inactive as well. By doing exercise 3.3, you can see how a parent
thread becomes inactive if all of its children are inactive.

Exercise 3.3: Using any text editor, enter this modified version of
program 3.3. Then execute it. What do you notice?
(Note: The thread bundles structure is the same as
the structure in program 3.3.)

/*
 Sample aCe Program
 Demonstrates how a child thread
 controls its parent bundles

 If the parent is inactive, all children

 45

 become inactive.

 Michelle L. McCotter
*/
#include <stdio.aHr>
/* define values to make active/inactive
idea more clear */
#define ACTIVE 1
#define INACTIVE 0
threads {B[2]} A[3];

int main() {
 int counter = 0;
 B.{
 int state = ACTIVE;
 int b = 0;
 /* all threads are initially active */

 while (state == ACTIVE) {
 MAIN.{ printf("\nLoop # %d\n"
 "--------\n",
 counter); }
 printf("Thread B[%d] "
 "is active.\n",$$i);
 A.{ printf("Thread A[%d] "
 "is active.\n",$$i); }
 MAIN.{ counter++; }
 if ((b-($$i)) == 0)
 state = INACTIVE;
 b++;
 }

 MAIN.{ printf("\nWhile loop finished\n"
 "-------------------"
 "\n"); }
 printf("Thread A[%d] "
 "is active.\n",$$i);
 A.{ printf("Thread B[%d] "
 "is active.\n",$$i); }
 MAIN.{ printf("\n"); }
 }
 return 0;
}

3.4 The Execution Context

An execution context is the area of code over which a bundle of threads
has permission to execute code. Unless stated otherwise (using code), the
execution context of ‘MAIN’ is the entire program. When a bundle of threads is

 46

created, the programmer must create an execution context for that bundle of
threads; otherwise, none of the threads will be able to execute any code.

In program 3.1 from section 3.2, we included some code like the following.

threads A[4];
int counter = 0;

int main () {
 A.{
 /* code to execute on ‘A’ threads here */
 }

 return 0;
}

Here, the execution context for the ‘A’ threads is the block of code between ‘A.{ ’
and the corresponding ‘}’. Any time we issue a command like

MAIN.{ /* code to execute here */ }

we create an execution context for ‘MAIN’. After the execution context for ‘MAIN’
ends (signified by the ‘}’ corresponding to the first ‘{‘ after ‘MAIN’), the execution
context reverts back to the ‘A’ threads.

Execution contexts may be nested. We have seen this before when
‘MAIN’ had an execution context inside of ‘A’. We see it again after we make a
change to the following statement.

B.{ a = b; }
A.{ d = c; }
B.{ x = y; }

Before we present an alternate version of this statement, we should first
understand what it does. Initially, all threads of ‘B’ copy ‘b’ to ‘a’, then all threads
of ‘A’ copy ‘c’ to ‘d’, and finally all threads of ‘B’ copy ‘y’ to ‘x’. This is equivalent
to the statement

B.{
 a = b;
 A.{ d = c; }
 x = y;
}

We initially create an execution context for ‘B’ in which all threads copy ‘b’ to ‘a’.
Then, inside the execution context for ‘B’, we create a one-line execution context
for ‘A’. After that ends, the execution context, by default, returns to ‘B’.

It is only necessary for contexts to be nested if the execution of one
context can implicitly affect the execution context of the other. This can happen if

 47

the contained context is contained within a condition statement of the containing
context, as in the statement

B. {
 if (a)
 A.{ x = y; }
}

If ‘a’ is true for any thread of ‘B’, then ‘y’ is copied to ‘x’ for all threads of ‘A’.
Otherwise (then ‘a’ is false for every thread of ‘B’) ‘y’ is not be copied to ‘x’ for
any thread of ‘A’.

The next example is a little more complicated.

B.{
 if (a)
 A.{ x = y; }
 else
 C.{ s = t; }
}

As with the previous example, ‘y’ is copied to ‘x’ only if ‘a’ is true for at least one
thread of ‘B’. Also, ‘t’ is copied to ‘s’ if ‘a’ is false for at least one thread of ‘B’.
An interesting side effect of this code is that ‘y’ will be copied to ‘x’ for all threads
of ‘A’ and ‘t’ will be copied to ‘s’ for all threads of ‘C’ as long as ‘a’ is true for
some threads and false for others. This statement may be more understandable
when you see that there are three possible scenarios.

1. At least one thread of ‘B’ is active, and at least one thread of ‘B’
is inactive, making all threads of ‘A’ and ‘C’ active.

2. All threads of ‘B’ are active, making all threads of ‘A’ active, and
all threads of ‘C’ inactive.

3. All threads of ‘B’ are inactive, making all threads of ‘A’ inactive,
and all threads of ‘C’ active.

To determine whether or not you understand this concept, try the following
exercises.

Exercise 3.4: In the following segment of code, explain what will
happen, based on execution contexts.

J.{
 if (p || q)
 K.{ x = y;}
 else if (r)
 L.{ s = t;}
 else
 M.{ u = v;}
}

 48

Solution: There are 3 main situations that could happen.
1. At least one of ‘p’ or ‘q’ is true for any thread of ‘J’,

and both ‘p’ and ‘q’ are false for at least one thread of
‘J’. Then all threads of ‘K’ will be active and one of
three situations will happen:
a. ‘r’ is true for at least one thread of ‘J’, and false

for at least one thread of ‘J’. Then all threads of
‘L’ and ‘M’ will be active.

b. ‘r’ is true for all threads of ‘J’. Then all threads of
‘L’ will be active, and all threads of ‘M’ will be
inactive.

c. ‘r’ is false for all threads of ‘J’. Then all threads of
‘M’ will be active, and all threads of ‘L’ will be
inactive.

2. At least one of ‘p’ or ‘q’ is true for all threads of ‘J’.
Then all threads of ‘K’ will be active, and all threads of
‘L’ and ‘M’ will be inactive.

3. Both ‘p’ and ‘q’ are false for all threads of ‘J’. Then all
threads of ‘K’ will be inactive, and one of the three
situations listed in situation 1 (a, b, or c) will happen.

Exercise 3.5: In the following segment of code
A.{
 if (a || b) {
 B.{ p = q; }
 if (a)
 C.{ r = s; }
 else
 D.{ t = u; }
 }
 else
 E.{ v = w; }
}

what situation is necessary for the threads of
a. ‘E’ to be active?
b. ‘B’ to be active?
c. ‘B’ to be active, and ‘C’ and ‘E’ to be inactive?
d. ‘B’ to be active, and ‘C’, ‘D’ and ‘E’ to be inactive?
e. ‘B’, ‘C’, and ‘D’ to be active, but not ‘E’?
f. ‘B’, ‘D’, and ‘E’ to be active, but not ‘C’?

Solution:
a. ‘a’ and ‘b’ are false for all threads of ‘A’.

 49

b. ‘a’ or ‘b’ is true for at least one thread of ‘A’.
c. ‘b’ is true for all threads of ‘A’.
d. Not possible
e. ‘a’ and ‘b’ are never both false for all threads of ‘A’,

and ‘a’ is false for at least one but not all threads of
‘A’.

f. ‘b’ is true for at some threads of ‘A’ and false for
others, and ‘a’ is never true for any thread of ‘a’.

Exercise 3.6: Write a segment of code that fulfills the following
conditions:
1. Assume the existence of thread bundles ‘A’, ‘B’,

‘C’, and ‘D’.
2. Assume the existence of variables ‘a’, ‘b’, ‘c’, ‘d’,

‘p’, ’q’, ‘r’, ‘s’, ‘t’, and ‘u’.
3. Have all of the condition statements occur inside

the execution context of ‘A’.
4. If both ‘a’ and ‘b’ are true for any thread of ‘A’,

then all threads of ‘B’ are active, and copy ‘q’ to
‘p’.

5. If both ‘a’ and ‘b’ are true for all threads of ‘A’,
then all threads of ‘C’ and ‘D’ are inactive.

6. If both ‘b’ and ‘c’ are true for any thread of ‘A’,
then
a. if ‘d’ is true for any thread of ‘A’, then all

threads of ‘C’ are active and copy ‘s’ to ‘r’.
b. if ‘d’ is false for any thread of ‘A’, then all

threads of ‘D’ are active and copy ‘t’ to ‘u’.
7. If ‘a’ and ‘b’, or ‘b’ and ‘c’, are false for any

thread of ‘A’, then all threads of ‘C’ are active and
copy ‘r’ to ‘s’.

Solution:

A.{
 if (a && b)
 B.{ p = q; }
 else if (b && c) {
 if (d)
 C.{ r = s; }
 else
 D.{ u = t; }
 }

 50

 else
 C.{ s = r; }
}

3.5 Input and Output (I/O)

I/O is defined as an order sequence of data that is to be placed in a file.
The data can be placed in the file concurrently, but the order within the file will be
properly ordered sequentially. In general in aCe, all active threads of a bundle
execute the same command at the same time; however, when commands are
given in which resources outside of the program itself are needed (i.e. printing),
and concurrent execution is not possible (i.e. printing the values of a variable to
the screen), aCe execution happens sequentially in order of thread identifier.
Observe the following code.

threads A[100];
A.{
 fileP = fopen("data","w"); /* open file for writing */
 fprintf(fileP,"$$i= \t%3d\n",$$i); /* print to file */
 fclose(fileP); /* close file */
}

The preceding code opens the file named ‘data’, prints the one hundred values
of $$i to that file (located at ‘fileP’), and closes the file. Note that each ‘A’
thread is commanded to open and close the file. This is because each thread of
‘A’ needs to know the location of the file, and this location value is obtained by
opening the file. Each thread that opens a file needs to close that file when the
file is no longer needed.

If the preceding code is contained within a conditional statement, only a
subset of the values of $$i, corresponding to the active threads, will be written to
the file.

threads A[100];
A.{
 fileP = fopen("data","w"); /* open file for writing */
 if ($$i > 90)
 fprintf(fileP,"$$i=\t%d\n",$$i); /* print to file */
 fclose(fileP); /* close file */
}

The code segment will write nine values into the file, from thread 91 through
thread 99.
 The following program is an example of I/O in aCe.

/*

 51

 Sample aCe Program
 Creates a two-dimensional bundle of threads
 Prints $$i, $$i[0], and $$i[1] of each thread to a file

 Michelle L. McCotter
*/
#include <stdio.aHr>
#define size 2
threads A[size][size+1];

int main() {
 A.{
 FILE *fileP; /* Create a pointer to a file */
 int var = 0;
 int ident = $$i;
 MAIN.{ printf("\n-->Values before writing to "
 "file:\n"); }
 printf(" ident = %d, var = %d\n",ident,var);
 fileP = fopen("identfile","w+");
 fwrite(&ident,sizeof(ident),1,fileP);
 fclose(fileP);

 fileP = fopen("identfile","r+");
 fread(&var,sizeof(var),1,fileP);
 fclose(fileP);

 MAIN.{ printf("\n-->Values after reading from"
 "file:\n"); }
 printf(" ident = %d, var = %d\n",ident,var);
 }
 return 0;
}

Program 3.4: Prints the values of a variable to a file for each thread in a
bundle, then reads the values from the file and assigns them to a
new variable.

Program 3.4 creates a two-dimensional bundle of threads, assigns the thread
identifiers to the variable ‘ident’, and writes the values of ‘ident’ to the file
“identfile”. Then, it reads the values from “identfile” into the variables
‘var’. We print out the values of the variables before and after the I/O, to allow
you to see the effect of reading and writing. Following is the program’s output.

-->Values before writing to file:
 ident = 0, var = 0
 ident = 1, var = 0
 ident = 2, var = 0
 ident = 3, var = 0
 ident = 4, var = 0
 ident = 5, var = 0

 52

-->Values after reading from file:
 ident = 0, var = 0
 ident = 1, var = 1
 ident = 2, var = 2
 ident = 3, var = 3
 ident = 4, var = 4
 ident = 5, var = 5

aCe does not allow two bundles of threads to write to the same file. If this
is attempted, one of the bundles of threads will write over what the other has
already written.
 aCe has another form of I/O, called fast I/O. The fast I/O routines
ffopen, ffread, ffwrite, and ffclose correspond to the standard I/O
routines fopen, fread, fwrite, and fclose, except that their use is very
machine dependent. Files written by fast I/O must be read by fast I/O. Also, files
written with fast I/O must also be read by a bundle of threads with exactly the
same geometry as the bundle that wrote it. The reason for this is that fast I/O is
intended to be implemented with the fast form of I/O available on the
architecture, which may differ from architecture to architecture.

3.6 Summary

• One of the four essential concepts in aCe is execution.

• All operations that can be executed by ‘MAIN’ can be executed by any
bundle of threads.

• aCe code, with minor exceptions, is the same as code for standard C.

• aCe gives the programmer the illusion that every active thread executes
each line of code (within the bundle’s execution context) at the same time.
Execution merely appears to be absolutely concurrent, when, in fact, it is
not. The importance is that the programmer believes that execution for a
bundle of threads is concurrent, and the end result of execution is as
though execution were entirely concurrent.

• The only operation supported by ANSI C but not by aCe is ‘goto’.

 53

• Conditional statements are used to make individual threads of a bundle
active or inactive. They can also be used to make whole bundles of
threads active or inactive.

• Active threads execute code given to them; inactive threads do not.

• When a thread has any number of sub-bundles, if that thread becomes
inactive, then all of the sub-bundles also become inactive. Also, if all of
the sub-bundles become inactive, then the parent thread also becomes
inactive.

• The execution context is the area of code over which a particular bundle of
threads has permission to executed commands.

• Execution contexts may be nested, but do not have to be. So although
thread bundle ‘B’ may be a sub-bundle of thread bundle ‘A’, the execution
context of ‘B’ can be, but does not have to be, nested inside the execution
contest of ‘A’.

• I/O in aCe is in order of thread identifier. Data is placed in a file
concurrently, but the data in the file are properly ordered sequentially.

• aCe does not allow two different bundles of threads to write to the same
file. If this is attempted, one of the bundles will write over what the other
has already written.

 54

Chapter 4: Thread Communication

4.1 Thread Communication Within a Bundle of Threads

Another of the four essential aCe concepts is communication, which we
discuss in this chapter. In section 1.6, we mentioned the idea of thread storage
access. A thread can only directly access its own storage, not the storage of any
other thread, even if the threads are in the same bundle. However, there are
methods that allow indirect access to storage of other threads. For now, we
focus on thread storage access within the same bundle of threads.

Indirect access to thread storage requires communication between
threads. In aCe, there are two basic communication operations. Other
programming languages refer to them as ‘get’ and ‘put’ operations. Following
is an example of ‘get’ in aCe.

A. {

int a,b,c;
b = ($$i+1) * ($$i-1);

 c = ($$i+1)%$$N;
a = A[c].b;

}

In this code, the value of ‘b’ is fetched from one thread of ‘A’ to another thread of
‘A’. This operation is depicted in figure 4.1.

Figure 4.1: An aCe ‘get’ operation.

 55

In aCe, all threads of a particular bundle are executing at the same time. For
simplicity, we have shown the steps of the ‘get’ operation for only one of the
threads of ‘A’. We arbitrarily show steps for A[2]. (1) When the program
reaches the line of code

a = A[c].b

it knows that the value of ‘a’ for the ‘A’ thread of index 2 will come from the
bundle of threads called ‘A’ (indicated by the ‘A’ in A[c].b). The value of the ‘c’
in the A[c].b comes from the ‘c’ of the current thread. That thread is the one
for which $$i=2; we represent that thread in figure 4.1 as A[2]. (2) Thus c=3
for the current thread. (3) So together, A[c]=A[3] means that we’re going to
look to the thread A[3] for the value of ‘b’ that we want. Because b=8 for A[3],
then a=A[c].b=8.

An aCe ‘put’ operation works in a similar manner. Observe the code for a
‘put’ operation.

A.{
 int a,b,c;
 a = ($$i-1) * ($$i+1);
 c = ($$i+1)%$N;
 A[c].b = a;
}

With this code, the value of ‘a’ of the current thread is stored in ‘b’ of a different
thread. The ‘put’ operation is depicted in figure 4.2.

Figure 4.2: An aCe ‘put’ operation.

We are assigning the value of ‘a’ of the current thread to A[c].b. (1) The
computer determines the value of ‘a’ for the current thread (in figure 4.2, that
thread is A[2]). (2) Then, the computer determines the value of ‘c’ in A[c].b,

 56

and finds that A[c].b = A[3].b. (3) Finally, the computer stores (puts) the value
of ‘a’ of the current thread (a=3) in the location A[3].b.

The following program demonstrates thread communication by using a
‘put’ operation to compute the sum of all of the logical thread identifiers of
bundle ‘A’.

/*
 Computes sum of all $$i for a bundle of threads
 Example of thread communication
 Sample aCe Program

 Michelle L. McCotter
*/
#include <stdio.aHr>
#define SIZE 8
threads A[SIZE];

int main() {
 int sum;
 /* Here, we use thread communication to compute the sum

of the eight logical 'A' thread identifiers--this is
equivalent to computing the sum of the first seven
integers */

 A.{
 int sum=0;
 A[0].sum += $$i;
 MAIN.{ printf("The sum of the %d logical thread\n"
 "identifiers in the bundle is %d.\n",
 SIZE,A[0].sum); }
 }
 /* Now, we use a common method to compute the sum of the
 first seven integers */
 sum = (SIZE-1)*(SIZE)/2;
 printf("\nThe sum of the first %d integers "
 "is %d.\n",SIZE-1,sum);

 return 0;
}

Program 4.1: Uses two different methods to compute the sum of the first seven
integers.

In program 4.1, we use thread communication to compute the sum of the first
seven integers (equal to the first eight logical thread identifiers). We also use a
known formula (sumn=(n)(n+1)/2, with n=SIZE-1) to do the same thing,
to show that our computation with thread communication works. Here is the
program’s output.

The sum of the 8 logical thread

 57

identifiers in the bundle is 28.

The sum of the first 7 integers is 28.

Notice that the sum of the first eight logical thread identifiers is equal to the sum
of the first seven integers. (This is because the indexing of threads begins with
zero, and not one.)

Exercise 4.1: Write a program that uses thread communication
(either ‘get’ or ‘put’—it can be done both ways) to
compute 9! Also include a computation using a
standard method to compare your thread’s
computation with the actual value. (By the way,
9!=362880.)

Solution:

/*
 Computes factorials using threads
 Uses thread communication
 Sample aCe Program

 Michelle L. McCotter
*/
#include <stdio.aHr>
#define size 10
threads A[size];

int main() {
int factorial=1,i;

 A.{
 int factorial=1,i,ident;
 ident = $$i;
 if ($$i != 0)
 A[0].factorial *= ident;
 if ($$i == 0)
 printf("\nUsing the 'put' method:\n"
 "-->%d!, computed via\n"
 " thread communication, "
 "is %d.\n",size-1,factorial);

 if ($$i == 0) {
 factorial=1;
 for (i=1; i < size; i++)
 factorial *= A[i].ident;
 printf("\nUsing the 'get' method:\n"
 "-->%d!, computed via \n"
 "thread communication, "

 58

 "is %d.\n",size-1,factorial);
 }
 }

 for (i=1; i<size; i++)
 factorial = factorial * i;
 printf("\nUsing the standard method:\n"
 "-->%d!, computed via a \n"
 " standard method, is %d.\n",
 size-1,factorial);
 return 0;
}

Program 4.2: Computes 9! twice using thread communication
methods of ‘get’ and ‘put’, and again using a
standard method.

4.2 Communications Path Descriptions

Communication between two threads is defined by a communication
expression. A communication expression consists of two parts:

1. the communication path description, or router expression, and
2. the remotely evaluated numeric expression, or remote expression.

In the case of the ‘get’ operation, discussed in section 4.1 and listed again here,

A.{
 int a,b,c;
 b = ($$i+1) * ($$i-1);
 c = ($$i+1)%$$N;
 a = A[c].b;
}

we focus on the statement a=A[c].b. In this statement, A[c] is the router
expression, and ‘b’ is the remote expression. In most cases, the ‘c’ in the router
expression indicates the thread for which $$i=c. However, if we have a multi-
dimensional bundle of threads like this one

threads B[2][3];

we write the router expression in two different ways, either

B[x].z or B[x][y].(z).

 59

The first method indicates the ‘B’ thread with $$i=x; the second indicates the ‘B’
thread with $$ix[0]=x and $$ix[1]=y. (Note: In the declaration

threads B[2][3];

dimension zero has three threads (is referred to second), and dimension one has
two threads (is referred to first). However, if one chooses to use a router
expression with two indices, the index for dimension zero goes first, and not
second.) If you ever use the second method, be sure to enclose the remote
expression, even if it is just a single variable.

Although router expressions are not all that difficult to understand, we
provide exercise 4.2 for you to test your comprehension.

Exercise 4.2: Identify the (a) communication expression, the (b)
router expression, and the (c) remote expression in
the following examples.
i. B[b].c = a
ii. G[b+1].c = d
iii. x = Y[0].(y+2)
iv. y = A[$$ix[0]].(z+1)
v. z = A[B[c].d].a
vi. D[k][l].n = m

Solution:
 (a) (b) (c)

i B[b].c B[b] c

ii G[b+1].c G[b+1] c

iii Y[0].(y+2) Y[0] y+2

iv A[$$ix[0]].(z+1) A[$$ix[0]] z+1

v. A[B[c].d].a B[c], A[B[c].d] d,a

vi. D[k][l].n D[k][l] n

Part v. is a trick question. There are two router
expressions here, one nested inside the other. This goes
to show that router expressions can indeed be nested.

4.3 Thread Communication Between Different Thread Bundles

Here, we show the method of thread communication between two bundles
with the use of an example. In the next section, we will discuss communication
path descriptions.

 60

Consider the bundles of threads declared the following line of code.

threads {B[3]} A[2];

The structure of these bundles of threads is shown in figure 4.4.

Figure 4.3: Bundles of threads declared by threads {B[3]} A[2];

Let’s say we declare an integer storage variable called ‘sum’ for each of the ‘A’
threads, and we want this variable to be the sum of the thread identifiers in each
‘A’ thread’s sub-bundle of ‘B’ threads. (i.e. ‘sum’ for the left-most ‘A’ thread would
be equal to the sum of the $$i values for each of the ‘B’ threads “underneath” of
it; so sum=0+1=1). To do this, we write the following code.

A.{ sum = B[2*($$i)].$$i + B[2*($$i)+1].$$i; }

This code says that ‘sum’ for each ‘A’ thread will be obtained from a sum of two
values. The first of these values comes from the ‘B’ thread with twice the logical
identifier as the current ‘A’ thread, and the specific value is the logical identifier of
that ‘B’ thread. The second of these values comes from the ‘B’ thread with a
logical identifier two times the logical identifier of the current ‘A’ thread, plus one;
the specific value is the logical identifier of this “next” ‘B’ thread.
 If this process is not yet clear, perhaps figure 4.5 will make it more so.

 61

Figure 4.4: Shows the sources of values in the communication expression.

For this example, the following table shows the values of each computation for
each of the threads of ‘A’.

 A[0] A[1] A[2]
$$i 0 1 2
2*($$i) 0 2 4
B[2*($$i)].$$i B[0].$$i B[2].$$i B[4].$$i
B[2*($$i)].$$i 0 2 4
2*($$i)+1 1 3 5
B[2*($$i)+1].$$i B[1].$$i B[3].$$i B[5].$$i
B[2*($$i)+1].$$i 1 3 5
sum 1 5 9

Computation values for thread communication.
You can try the following exercises to test your comprehension of thread

communication between different bundles.

Exercise 4.3: What is wrong with the following code? (Hint: Look
at the communication expression.)

threads A[2];
threads B[3];
A int a,c;
B int b;

int main() {
 A.{

 62

 c = $$i;
 B.{ b = ($$i+1)%($$N); }
 a = B[b].$$i;
 }
 return 0;
}

Solution: The router expression is incorrect. ‘b’ is a value directly

accessible only to the ‘B’ threads, and since we are
inside the execution context of ‘A’, the value between the
brackets of ‘B[...]’ should be a value accessible to the
‘A’ threads.

Exercise 4.4: Write a program to compute 9! using thread
communication between a bundle of threads and
‘MAIN’. Do this by sending values from your bundle
of threads into a storage variable of ‘MAIN’.

Solution:

/*
 Computes factorials using threads
 Uses thread communication between bundles
 Sample aCe Program

 Michelle L. McCotter
*/
#include <stdio.aHr>
#define size 10
threads A[size];

int main() {
 int factorial=1,i;

 for(i=1; i<size; i++)
 factorial = factorial * A[i].$$i;
 printf("The factorial of %d, computed via\n"
 "thread communication, is %d.\n",
 size-1,factorial);

 63

 return 0;
}

Program 4.3: Uses thread communication between ‘MAIN’ and
another bundle of threads to compute 9!.

Exercise 4.5: Write a program that creates a bundle of three
threads. Then, print the system constants for that
bundle without declaring an execution context for
that bundle. It may be easiest to print out all system
constants for each thread, one thread at a time,
rather than a particular system constant for all
threads, one thread at a time (as we did in chapter
2).

Solution:

/*
 Sample aCe program
 Prints each of the system constants for bundle

of threads

Michelle L. McCotter
*/
#include <stdio.aHr>
#define size 3
threads A[size];

int main () {
 int i=0,j=0;

 for (i=0; i<size; i++) {
 printf("\nSystem Constants for Thread"
 " A[%d]\n",A[i].$$i);
 printf("-------------------"
 "-------------\n");
 printf("$$Name\t= %s\n",A[i].$$Name);
 printf("$$D\t= %2d\n",A[i].$$D);
 printf("$$N\t= %2d\n",A[i].$$N);
 printf("$$L\t= %2d\n",A[i].$$L);
 printf("$$i\t= %2d\n",A[i].$$i);
 printf("$$ii\t= %2d\n",A[i].$$ii);
 printf("$$Nx[0]\t= %2d\n",A[i].$$Nx[0]);
 printf("$$Lx[0]\t= %2d\n",A[i].$$Lx[0]);
 printf("$$ix[0]\t= %2d\n",A[i].$$ix[0]);
 }

 64

 return 0;
}

Program 4.4: Uses thread communication to print system constants for a
bundle of threads.

4.4 Communications Path Descriptions for Communication
Between Bundles

In section 4.2, we talked about a communication expression, and we gave
examples of the router expression and remote expression for communication
within a bundle of threads. Now, we would like to talk about the communication
expression for communication between different bundles.

In the code

threads A[1];
threads B[1];
A.{
 int t;
 B int s;
 t = B[0].(s+1);
}

the ‘A’ and ‘B’ threads are single-thread bundles. B[0] is the router expression,
(s+1) is the remote expression that is executed on the threads of ‘B’, and ‘t’ is
the variable in each of the ‘A’ threads to which the values received from the ‘B’
threads are stored. The router expression (B[0]) describes the path between
the remote execution context (the ‘B’ threads) and the local execution context
(the ‘A’ threads). If the router expression is the source of a value (i.e. a gather or
fetch operation like it is here), the remote context computes a value (the value of
‘s’ for the thread indicated by B[0], plus one). That value is fetched by the local
context from the remote thread that is described by the router expression.

The threads of ‘B’ need not be currently active to evaluate the expression
(s+1). If a value is to be fetched from an inactive ‘B’ thread, that thread is
temporarily made active.

Since ‘A’ and ‘B’ are single-thread bundles, we could write the
communication expression as B.(s+1) instead of B[0].(s+1), because there
is only one ‘B’ thread; there is no need to make a distinction (i.e. with the 0 in
B[0]) about the ‘B’ thread from which we want to fetch the value of (s+1).

With multi-thread bundles, we can still write the communication expression
without an index. By default, an expression like B.(s+1) is evaluated the same

 65

as an expression with an index of zero (B[0].(s+1)). If we want to refer to
threads other than the thread with $$i=0, we must include an index in the router
expression.

Values may be fetched from existing but not necessarily active threads. If
an attempt is made to fetch a value from a non-existing thread, the result is
undefined. As mentioned before, if values are to be fetched from inactive
threads, those threads are temporarily made active. In general, a gather
operation (to be discussed in a later section) activates all threads that will be
fetched from, and deactivates threads that will not be fetched from for the
duration of the remote context’s execution. This happens no matter what the
active state was prior to the communication. In the following example, if the
conditional expression were eliminated, the router expression would generate
invalid addresses for some local threads. Thus a conditional statement is used
to ensure that only valid thread addresses are fetched.

#define size 16
threads E[size];
threads F[size];
E.{
 int a;
 F.{ int b = $$i*8; }
 if ($$i+2<size)
 a = F[$$i+2].(b+1);
}

You should understand communication expressions at this point. If you do
not, go back and read sections 4.2 and 4.4 again. You can do any of the
exercises presented so far in this chapter to test your comprehension.

4.5 Conditional Expressions

A conditional expression can also affect communications. Only active
threads can initiate a ‘get’ or ‘put’ operation. In the statement

B.{
 if (a)
 b = A[c].x;
}

only threads of ‘B’ for which ‘a’ is true actually fetch a value from the storage
location ‘x’ of a thread of ‘A’. In the statement

B.{
 if (a)
 A[c].y = b;
}

 66

only active threads of ‘B’ will store (or ‘put’) values into threads of ‘A’.

Threads of ‘A’ need not be active to be fetched from (‘get’) or have their
storage modified (‘put’). For example, in the statement

A.{
 if ($$i == 0) {
 B.{
 if (a)
 A[c].y = b;
 }
 }
}

all but one thread of ‘A’ are made inactive by if statement; yet all threads of ‘B’
(which are active, i.e. for which ‘a’ is true) will store (‘put’) values into threads of
‘A’. To allow you to see this better, we include an example program that does
this.

/*
 Sample aCe Program
 Demonstrates active and inactive threads
 in a 'get' operation

 Michelle L. McCotter
*/
#include <stdio.aHr>
threads A[4];
threads B[6];

int main() {
 A int a;
 B int b;

 A.{
 /* initialize all a values to -1 so that we can
 easily see when a values are modified later */
 a = -1;
 /* The Conditional Statement that follows makes all
 but one A thread inactive */
 if ($$i == 2) {
 /* only active threads of A will print out */
 printf("Active Thread: $$Name = %s, "
 "$$i = %d, a = %d\n",
 $$Name,$$i,a);
 a = $$i;
 B.{
 b = $$i;
 MAIN.{ printf("\n"); }
 /* only active threads of B will print out */

 67

 printf("Active Thread: $$Name = %s, "
 " $$i = %d, b = %d\n",$$Name,$$i,b);

 A[b].a = $$i;
 }
 }
 MAIN.{ printf("\n"); }
 /* only active threads of A will print out */
 printf("Active Thread: $$Name = %s, $$i = %d, "
 "a = %d\n",$$Name,$$i,a);
 }
 return 0;
}

Program 4.5: Demonstrates modification of data of inactive threads via a ‘put’
operation from active threads.

Program 4.4 has the following output.

Active Thread: $$Name = A, $$i = 2, a = -1

Active Thread: $$Name = B, $$i = 0, b = 0
Active Thread: $$Name = B, $$i = 1, b = 1
Active Thread: $$Name = B, $$i = 2, b = 2
Active Thread: $$Name = B, $$i = 3, b = 3
Active Thread: $$Name = B, $$i = 4, b = 4
Active Thread: $$Name = B, $$i = 5, b = 5

Active Thread: $$Name = A, $$i = 0, a = 0
Active Thread: $$Name = A, $$i = 1, a = 1
Active Thread: $$Name = A, $$i = 2, a = 2
Active Thread: $$Name = A, $$i = 3, a = 3

Initially, only one thread of ‘A’ prints, showing that only one thread of ‘A’ is active.
While only one thread of ‘A’ is active, all threads of ‘B’ are active, shown by all the
‘B’ threads printing out their values for ‘b’. ‘B’ threads then perform ‘put’
operations to modify the values stored in ‘a’ of the ‘A’ threads. Even though all
but one thread of ‘A’ are inactive, we see by the later printout of ‘A’ threads that
all of the ‘a’ values for the ‘A’ threads were modified. (If they had not been
modified, they would have been equal to –1.)

4.6 Summary

• A thread can only access its own storage directly; it cannot directly access
the storage of any other thread, even if the threads are in the same
bundle.

 68

• In aCe, there are two basic communication operations: ‘get’ and ‘put’.

• A communication expression defines communication between two
threads. The expression consists of two parts: the router expression and
the remote expression.

• A conditional expression can also affect communications. Only active
threads can initiate communication. Other threads need not be active to
be fetched from or have their storage modified.

 69

Chapter 5: Path Descriptions

5.1 Definition

Before further discussion of thread communication, we must understand
the different types of addressing used in aCe, known as path descriptions. A
path description is simply a description of the path to a particular thread. In aCe,
there are four types of path descriptions: absolute addressing, universal
addressing, relative addressing, and reduction addressing. We will discuss each
of these types in detail, one type at a time.

5.2 Absolute Addressing

Absolute addressing assumes that the path description starts at ‘MAIN’,
and proceeds down the tree to the remote thread. Given

threads {{D[2],E[4]} C[1],{F[3]} B[2]} A[3];

we have a thread bundles structure looks like figure 5.1.

Figure 5.1: Bundles of threads created with the threads declaration
threads {{D[2],E[4]} C[1],{F[3]} B[2]} A[3];

For the statement

E.{
 int a,x1,x2,x3;
 F int f;

 70

 a = A[x1].B[x2].F[x3].(f+1);
}

to locate the value of (f+1), we traverse figure 5.1 from ‘MAIN’ to the x1-th
thread of ‘A’. From this node, we then proceed to the x2-th thread of ‘B’. ‘x2’ is
the logical thread identifier of the ‘B’ thread, modulo the number of ‘B’ threads
under each ‘A’ thread. Finally, we end at the x3-th thread of ‘F’. Similar to ‘x2’,
‘x3’ is the logical thread identifier of the ‘F’ thread, modulo the number of ‘F’
threads under each ‘B’ thread. Note that ‘x1’, ‘x2’, and ‘x3’ have a different
value of each thread of ‘E’ and that the path for each thread of ‘E’ is to a different
thread of ‘F’. The following diagram shows the highlighted path for a thread of ‘E’
where x1=1, x2=0, and x1=2.

Figure 5.2: The boldface path displays the path indicated by the absolute path
description A[1].B[0].F[2].(f+1)

5.3 Universal Addressing

Universal addressing is like absolute addressing but needs not start at a
the child of ‘MAIN’. In a way, universal addressing initially treats all threads of a
bundle as if they were contained in a single one-dimensional bundle; no matter
what the local thread is, a programmer can directly refer to another bundle of
threads, without having to include the path to that bundle from the local bundle.
For example, in the following code, threads of ‘E’ are children of threads of ‘C’,
which are children of threads of ‘A’.

threads {{D[2],E[4]} C[1],{F[3]} B[2]} A[3];
B.{
 int x1,x2,b;
 E int e;
 C[x1].E[x2].e = b;
}

Figure 5.3 depicts the layout of the bundle of threads.

 71

Figure 5.3: Thread bundles declared by
threads {{D[2],E[4]} C[1],{F[3]} B[2]} A[3];

Inside the execution context of ‘B’, data of threads of ‘B’ need to be sent to
threads of ‘E’, which are not children of that thread of ‘B’. However, each thread
of ‘B’ contains the value of the thread identifier, ‘x1’, of the thread of ‘C’ that is the
parent of the thread of ‘E’ (with identifier ‘x2’) where the data is to be sent. Thus,
the value of ‘x1’ is used as the index into the one-dimensional array of threads of
‘C’ as a starting point of the path. Even though the local bundle is the ‘B’ threads,
we can directly refer to a child bundle of the ‘C’ threads because universal
addressing allows us to do this. The important part of universal addressing is
that the index value of the first bundle of threads specified (i.e. the ‘C’ threads)
comes from the $$i values across the entire bundle of ‘C’ threads. The rest of
the path (after C[x1]) is treated as if it were absolute addressing, and the
indices for these bundles are the relative $$i values within the specific sub-
bundle.

With x1=1 and x2=2, the communication expression C[x1].E[x2].e
refers to the value of ‘e’ of the ‘E’ thread indicated by the boldface path in figure
5.4.

Figure 5.4: The boldface path displays the path indicated by the universal path
description C[0].E[2].e.

Note that the universal path description that we are using as an example

does not start at a child of ‘MAIN’ (an ‘A’ thread). Instead, it starts with a ‘C’
thread. The difference between universal addressing and absolute addressing
lies in this idea: absolute addressing must always start at a child of ‘MAIN’.

 72

We include the following program as an example of universal addressing.
The structure of the threads in the program corresponds to the structure found in
figure 5.4.

/*
 Sample aCe Program
 Demonstrates universal addressing

 Michelle L. McCotter
*/
#include <stdio.aHr>
threads {{D[2],E[4]} C[1],{F[4]} B[2]} A[3];

int main() {
 B.{
 /* do everything in this execution context for each
 thread of B */
 int x1,x2,sizeC,sizeE;
 E int e = -1; /* initialize to -1 so we can see
 which ones do not get modified */
 sizeC = C.$$N;
 sizeE = E.$$N/C.$$N;
 x1 = ($$i)%(sizeC);
 x2 = ($$i)%(sizeE);
 C[x1].E[x2].e = C[x1].E[x2].$$i; /* assign a $$i of
 E to the corre-
 sponding e of E*/
 E.{ printf("$$i = %2d, C[%d].E[%d].e = %2d\n",
 $$i,$$i/B.sizeE,$$i%(B.sizeE),e); }

 /* print out values of e for each thread
 of E */

 }
 return 0;
}

Program 5.1: Assigns $$i of the current ‘B’ thread to the ‘e’ of an ‘E’ thread,
using universal addressing. Prints out values of ‘e’ for every ‘E’
thread.

Program 5.1 prints the following output.

$$i = 0, C[0].E[0].e = 0
$$i = 1, C[0].E[1].e = -1
$$i = 2, C[0].E[2].e = -1
$$i = 3, C[0].E[3].e = 3
$$i = 4, C[1].E[0].e = 4
$$i = 5, C[1].E[1].e = 5
$$i = 6, C[1].E[2].e = -1
$$i = 7, C[1].E[3].e = -1
$$i = 8, C[2].E[0].e = -1

 73

$$i = 9, C[2].E[1].e = 9
$$i = 10, C[2].E[2].e = 10
$$i = 11, C[2].E[3].e = -1

Program 5.1 should be a good example of how universal addressing works. Six
of the ‘e’ values have been modified (i.e. they are no longer –1). This is as we
would expect, because the universal addressing occurs within the execution
context of ‘B’, and there are six ‘B’ threads. There is one minor detail to note: we
use a modular operation when computing ‘x1’ and ‘x2’, because the compiler
would give an error if there were an attempt to fetch data from threads that did
not exist. Using the mod operator (so long as it is used correctly) ensures that all
of our universal address are valid.

5.4 Relative Addressing

Relative addressing is a bit more difficult to explain than universal or
absolute addressing. Relative addresses are computed with respect to the local
thread’s address and/or the address of one or more of its parents. A relative
router expression is prefixed with a period (.) and is assumed to start at the local
thread’s bundle, or one of its parents (meaning a parent thread, a grandparent
thread, etc.) Using the same threads structure as with our previous examples,
the following code includes an example of a path from a thread of ‘E’ to a thread
of ‘F‘.

threads {{D[2],E[4]} C[1],{F[3]} B[2]} A[3];
E.{
 int e,x1,x2,x3;
 F int f;
 e = .C.A[x1].B[x2].F[x3].(f+1);
}

Figure 5.5 shows the highlighted path (using relative addressing) to fetch
a remote value from a thread of ‘B’ (with absolute path description
A[0].B[1].F[1]) to a local thread of ‘E’ (with absolute path description
A[0].C[0].E[0]), where x1=0, x2=1 and x3=1.

 74

Figure 5.5: Relative path description for .C.A[0].B[1].F[1].(f+1) from a
local thread with absolute address A[0].C[0].E[0].

In this example, the local thread is shown in figure 5.5, and the relative

path description is .C.A[x1].B[x2].F[x3].(f+1). When determining the
absolute address for relative router expression, we speak in terms of bundle
levels. Since we have chosen to depict bundles of threads far in a tree-like
structure, the idea of levels should be straightforward. ‘MAIN’ is at top, ‘A’ is
above ‘B’ and ‘C’. ‘B’ and ‘C’ are two levels below ‘MAIN’, one level below ‘A’, etc.
A given bundle of threads, in general, is one level below its parent bundle.

Relative path calculations are done modulo the size of the dimensions of
the sub-bundle, thus toroidally connecting the sub-bundles of threads. As we
describe relative addressing in detail, you will come to see how this is true. The
actual remote thread referred to by a relative router expression depends on the
specific local thread, as well as the values inside the brackets of each thread
bundle (i.e. ‘x1’, ‘x2’, and ‘x3’). When ‘x1’, ‘x2’, and ‘x3’ are not zero, they
serve in shifting the absolute address of the remote thread; when they are zero,
there is no shift. We discuss one portion of the relative router expression at a
time.

1. F[x3]—This is just the address of the remote thread within the ‘F’
bundle. It has nothing to do with determining which ‘F’ bundle is
referred to (other portions of the relative router expression do that, and
they will be discussed momentarily). Since the ‘F’ bundles are at the
same level as the ‘E’ bundles, we determine the corresponding
absolute address for the ‘F’ portion of the relative address as follows:
a) Determine $$i for the local thread. In this case, there are twelve

‘E’ threads, so $$i can have values from the set {0,1,…,11}.
For the local thread indicated in figure 5.5, $$i=0.

b) Determine $$N for the bundle containing the remote thread. With
our example, $$N=3.

c) Using $$i from part a) and $$N from part b), determine the
absolute address of the ‘F’ thread by computing the value of

 75

F[(x3+$$i)%$$N]. In this case, F[(1+0)%3]=F[1]. At this
point, F[1] could refer to any of the threads circled in figure 5.6.

Figure 5.6: Possible ‘F’ threads referred to by F[x3]. The specific ‘F’ thread
will be determined as we determine possible ‘B’ threads and a
distinct ‘A’ thread.

2. B[x2]—This is the relative address of the parent thread of the ‘F’

thread indicated by F[x3]. By “relative” address, we mean the
address of the ‘B’ thread within one sub-bundle of ‘B’ threads, and not
the address with respect to all ‘B’ threads. So since there are only two
‘B’ threads in any one bundle, B[x2] refers to either B[0] or B[1], no
matter what value ‘x2’ is. Since the ‘B’ threads are one level above the
‘E’ threads, we no longer use $$i of the ‘E’ thread. Rather, we use the
$$i of the parent of the ‘E’ thread (the local thread). To determine the
absolute address of the ‘B’ portion of the relative address, do as
follows:
a) Determine the $$i of the parent thread of the local thread, one

level up from the local thread (i.e. the $$i of the ‘B’ threads). In
this case, $$i=0.

b) Determine $$N for the parent bundle of the remote thread one level
up from the remote thread. In this case, $$N=2.

c) Using $$i from part a) and $$N from part b), determine the
absolute address of the ‘B’ thread by computing the value of
B[(x2+$$i)%$$N]. In this case, B[(1+0)%2]=B[1]. Taking
B[1] from what we just determined, and F[1] from what we
determined in part 1, B[1].F[1] could refer to any of the threads
circled in figure 5.7.

 76

Figure 5.7: Possible ‘F’ threads referred to by B.[x2].F[x3]. The specific ‘F’
thread will be determined as we determine possible a distinct ‘A’
thread.

3. A[x1]—This is the relative address of the parent thread of the ‘B’

thread indicated by B[x2]. As we explained in part 2, this means that
A[x1] refers to either A[0], A[1], or A[2]. Since the ‘A’ threads are
two levels above the ‘E’ threads, we use $$i of the ‘A’ thread, the $$i
of the parent of the ‘E’ thread two levels above the ‘E’ thread. To
determine the absolute address of the ‘A’ portion of the relative
address, do as follows:
a) Determine the $$i of the parent thread of the local thread, two

levels up from the local thread (i.e. the $$i of the ‘A’ threads). In
this case, $$i=0.

b) Determine $$N for the parent bundle of the remote thread one level
up from the remote thread. In this case, $$N=3.

c) Using $$i from part a) and $$N from part b) Determine the
absolute address of the ‘A’ thread by computing the value of
A[(x1+$$i)%$$N]. In this case, A[(0+0)%3]=A[0]. Taking
A[0] from what we just determined, B[1] from part 2, and F[1]
from part 1, A[0]. B[1].F[1] refers to the remote thread circled
in figure 5.8.

Figure 5.8: The ‘F’ thread referred to by A[x1].B[x2].F[x3], for the local
thread with the absolute address of A[0].C[0].E[0],

 77

4. .C—The parent of the local thread is a ‘C’ thread, indicated by ‘.C’.
Parents of the local thread do not need indices if they are specifying
the path up the bundle hierarchy toward ‘MAIN’. Actually, it is
unnecessary to specify the bundle ‘C’ in the router expression since ‘A’
is a grandparent, and thus also considered a parent, of ‘E’. Instead,
the expression could be written as ‘.A[x1].B[x2].F[x3]’.

Thus for the local thread of ‘E’ with absolute path description

A[0].C[0].E[0], the remote thread of ‘F’ denoted by A[0].B[1].F[1] has
absolute path description A[0].B[1].F[1]. It may seem that we did a lot of
work for an address that turned out to be so simple. So let us consider a more
complicated example. We will use the same thread bundles structure, with
relative router expression .A[5].B[3].F[7] and absolute local address
A[1].C[0].E[2]. Although we choose not to include all our work as we did in
the previous example, by following the same pattern as we used previously, we
find that the absolute address of the remote thread is A[0].B[0].F[1]. We
show this visually in figure 5.9.

Figure 5.9: Relative path description for .A[5].B[3].F[7].(f+1) from a
local thread with absolute address A[1].C[0].E[2].

Exercise 5.1: For the local thread with absolute address
A[1].C[0].E[2], go through each portion of the
relative address .A[5].B[3].F[7] (following the
steps we outlined previously to compute the
absolute address of the remote thread
(A[0].B[0].F[1].)

There are a two other things to keep in mind with relative addressing. For

one, the remote thread does not have to be at the same level as the local thread.
In the preceding example, we could have used the relative router expression

 78

.A[5].B[3] instead. All absolute addresses would have been calculated the
same. Second, the remote thread cannot be at a level lower than the level of the
local thread. If you try to write a program that uses relative addressing to
reference a thread at a lower level than the level of the local thread, the compiler
will give you a linking error.

Relative addressing can seem quite complicated. If you do exercise 5.2
by adhering to the general ideas that follow, you will be able to see the
complexity of relative addressing, and you will also be able to test how well you
understand the concept.

• The relative router expression can be divided into different threads.
Consider one thread at a time. For clarity, let us refer to these different
divisions as destination threads. (i.e. We can divide the relative router
expression .A[5].B[3], into A[5] and B[3].)

• When we calculate the absolute address for each thread in the router
expression (i.e. each destination thread), we need to determine three
values:
a) ‘N’—the number of threads in the destination thread bundle (i.e.

When we are computing the address of the ‘B’ thread, B[3] is our
destination bundle, there are three threads in the ‘B’ bundle.)

b) ‘x’—the displacement value, which is indicated by the number in
brackets (i.e. With B[3], the displacement value is 3.)

c) ‘$$i’—the thread identifier of the local thread or one of the
parents of the local thread, whichever thread is at the same level as
the level of the destination thread bundle.

• The index of the absolute address for each destination bundle is
determined by: index=(x+$$i)%N.

Exercise 5.2: Using the same threads structure (declared by
threads {{D[2],E[4]} C[1],{F[3]} B[2]} A[3];),
fill in the table below. Refer to figure 5.10 for help.

Local Thread Remote Thread Remote Thread
(Abs Address) (Rel Address) (Abs Address)
A[0].C[0].E[0] .A[1].B[1].F[1] a)
A[2].C[0].E[2] .A[2].B[5].F[8] b)
A[2].C[0].E[2] .A[5].B[2] c)
A[1].C[0].E[2] d) A[2].B[1]
A[0].B[1] .A[2].C[0].E[1] e)
f) .A[5].C[6].E[4] A[2].C[0].E[3]
A[2].C[0] g) A[1].B[1]
A[1].B[0] h) undefined

 79

Figure 5.10: Thread bundles created by the declaration
threads {{D[2],E[4]}C[1],{F[3]}B[2]}A[3];

Solution:

a) A[1].B[1].F[1]
b) A[1].B[1].F[0]
c) A[5].B[0]
d) .A[1+3m].B[2n], where m,n ∈ N
e) undefined
f) A[0].B[1].F[0]
g) A[2+3m].B[1+2n] , where m,n ∈ N
h) any relative address to an ‘E’ thread

Exercise 5.3: This exercise will help you understand how different
relative addresses affect the same local thread. Let
the numbered instructions guide you as you
complete each part of the table that follows.
1) After filling in parts a) and b), make a prediction

about part c). Test your prediction. Were you
right?

2) Now fill in part d). Notice how many threads
there are in each sub-bundle of the ‘F’ threads.
Make a prediction for part e) and test it.

3) Fill in part f). What will the absolute address be
for part g)? (Hint: Patterns with the ‘F’ threads
correspond to patterns with the ‘B’ threads.)

4) Using the trends you’ve discovered with the
previous portions of this exercise, make a guess
for part h). Was your guess correct?

5) For part i), what is your guess for the absolute
address? (Hint: Patterns with the ‘A’ threads
correspond to patterns with the ‘F’ threads and
‘B’ threads.)

 80

Local Thread Remote Thread Remote Thread
(Abs Address) (Rel Address) (Abs Address)
A[0].C[0].E[0] .A[0].B[0].F[0] a)
A[0].C[0].E[0] .A[0].B[0].F[1] b)
A[0].C[0].E[0] .A[0].B[0].F[2] c)
A[0].C[0].E[0] .A[0].B[0].F[3] d)
A[0].C[0].E[0] .A[0].B[0].F[5] e)
A[0].C[0].E[0] .A[0].B[1].F[0] f)
A[0].C[0].E[0] .A[0].B[2].F[0] g)
A[0].C[0].E[0] .A[0].B[5].F[7] h)
A[0].C[0].E[0] .A[5].B[3].F[8] i)

Solution: a) A[0].B[0].F[0]

b) A[0].B[0].F[1]
c) A[0].B[0].F[2]
d) A[0].B[0].F[0]
e) A[0].B[0].F[2]
f) A[0].B[1].F[0]
g) A[0].B[0].F[0]
h) A[0].B[1].F[1]
i) A[2].B[1].F[2]

Exercise 5.4: This exercise will help you understand the effect of
the same relative address on different local threads.
Use the following threads declaration.
threads {{D[1],E[5]} C[1],{F[3]} B[2]} A[3];

to complete the following table. Figure 5.11 is
included to assist you.
1) After filling in parts a) and b), make a prediction

about part c). Test your prediction. Were you
right?

2) Fill in parts d) and e). Predict the answers for
parts f) and g). Were your predictions correct?

3) Complete h) and i). What should part j) be?
Test your prediction.

4) Finally, fill in parts k) and l). Guess the solution
for part m), then check your answer.

 81

Local Thread Remote Thread Remote Thread
(Abs Address) (Rel Address) (Abs Address)
A[0].B[0].F[0] .A[0].C[0].E[0] a)
A[0].B[0].F[1] .A[0].C[0].E[0] b)
A[0].B[0].F[2] .A[0].C[0].E[0] c)
A[0].B[1].F[2] .A[0].C[0].E[0] d)
A[1].B[0].F[0] .A[0].C[0].E[0] e)
A[1].B[1].F[1] .A[0].C[0].E[0] f)
A[2].B[0].F[0] .A[0].C[0].E[0] g)
A[0].B[0].F[0] .A[0].C[0].E[2] h)
A[0].B[0].F[1] .A[0].C[0].E[2] i)
A[0].B[0].F[2] .A[0].C[0].E[2] j)
A[0].B[1].F[0] .A[1].C[0].E[0] k)
A[0].B[1].F[1] .A[1].C[0].E[0] l)
A[0].B[1].F[2] .A[1].C[0].E[0] m)

Figure 5.11: Thread bundles created by the declaration
threads{{D[1],E[5]}C[1],{F[3]}B[2]}A[3]

Solution: a) A[0].C[0].E[0]

b) A[0].C[0].E[1]
c) A[0].C[0].E[2]
d) A[0].C[0].E[0]
e) A[1].C[0].E[1]
f) A[1].C[0].E[2]
g) A[2].C[0].E[2]
h) A[0].C[0].E[2]
i) A[0].C[0].E[3]
j) A[0].C[0].E[4]
k) A[2].C[0].E[1]
l) A[2].C[0].E[2]
m) A[2].C[0].E[3]

 82

5.5 Reduction Addressing

Reduction addressing can be viewed as all-to-all communications. Every
thread of the source bundle sends a value to every thread of the destination
bundle. This mode of addressing is useful as well as efficient for performing
global reductions (to be defined in a few paragraphs). Reduction addressing is
also efficient if a value is needed from the threads of a bundle by the threads of
another if the value is the same for all threads. Reduction addressing is
performed by designating the name of the bundle from which a value is to be
reduced.

Observe the following code.

threads H[100];
threads B[300][400];
H.{
 int a;
 B int b=z;
 a = B.b;
}

In this code, note the expression ‘a=B.b’. Although ‘B’ is a two-dimensional
thread bundle, the path from ‘B’ is designated by its name alone and no indices.
The expression will get the value of ‘b’ of the active thread of ‘B’ with smallest
logical identifier value and distribute it to ‘a’ of all the active threads of ‘H’. The
next example is functionally equivalent to the previous, except that the values of
‘b’ are being sent to ‘a’ rather than being fetched by ‘H’ and assigned to ‘a’.

threads H[100];
threads B[300][400];
B.{
 H int a;
 int b=z;
 H.a = b;
}

Exercise 5.5: Using any editor you choose, enter the following
program.

/*
 Sample aCe Program
 Demonstrates the use of reduction
 addressing

 Michelle L. McCotter
*/
#include <stdio.aHr>

 83

threads A[3];
threads B[3][2];

int main() {
 A int a = 0;
 B.{
 if ($$i >= 0)
 A.a = $$i;
 }
 A.{ printf("a = %d\n",a); }
 return 0;
}

Program 5.2: Demonstrates the use of reduction
addressing.

Compile and execute the program. What do you
notice about the values of ‘a’ that print out? Change
the value in the if statement to something larger
than zero, and execute the program. What do you
notice?

Solution: Each value of ‘a’ is equal to the value of the smallest
thread identifier of the active ‘B’ threads.

A global reduction occurs when multiple data are combined using a

combination operator (as in +=, -=, &=, |=, etc.). Global reductions can be
performed by this addressing mode by replacing the ‘=’ with operations such as
‘+=’. In this case, the values of ‘b’ of all active threads of ‘B’ are summed and
added to ‘a’ of all threads of ‘H’.

threads H[100];
threads B[300][400];
B.{
 H int a;
 int b=z;
 H.a += b;
}

Global reductions are limited to the following operations: addition (+=),
subtraction (-=), and (&=), or (|=), exclusive or (^=), minimum (<?=), and
maximum (>?=). You should keep in mind that the ‘and’, ‘or’, and ‘exclusive
or’ operations result from binary bitwise functions. For example, the assignment
'&=' is determined by (a&b&c&d ...). '&' is the binary bitwise ‘and’ function
(i.e. 1100&1010=1000). The ‘or’ and ‘exclusive or’ functions are similar.

 84

Exercise 5.6: Experiment with various global reductions, making
sure you understand what is going on in your
programs.

Exercise 5.7: As a review of addressing types, can you identify the
type of addressing for each of the following
addresses?
a. threads {{C[2]}B[3]}A[4];
 A[x1].B[x2].C[x3].c

b. threads {{C[2]}B[3]}A[4];
 C.c

c. threads {D[2],{C[2]}B[3]}A[4];
.B[x1].C[x2].c

d. threads {{E[2],D[2]}C[2]}A[1];
 E.$$i
e. threads {{E[2],D[2]}C[2]}A[1];
 C[x1].E[x2].e
f. threads {{C[2]}B[3]}A[4];
 .C.c
g. threads {{C[2]}B[3]}A[4][3];
 A[3][2].$$ix[0]
h. threads {{C[2]}B[3]}A[4][3];
 C[x1].c

Solution:

a. absolute
b. reduction
c. relative
d. reduction
e. universal
f. relative
g. absolute
h. universal

5.6 Summary

• A path description is a description of the path to a particular remote
thread. There are four types of path descriptions: absolute, universal,
relative, and reduction.

• Absolute addressing assumes that the path starts at ‘MAIN’ and proceeds
down the thread bundles tree to the remote thread.

 85

• Universal addressing is like absolute addressing, but needs not start at a
child of ‘MAIN’.

• Relative addresses are computed with respect to the local thread’s
address and the address of one or more of its parents. A relative router
expression is prefixed with a period (.) and is assumed to start at the local
thread’s bundle, or at one of the local thread’s parent bundles.

• Reduction addressing can be viewed as all-to-all communications. Every
thread of the source bundle sends a value to every thread of the
destination bundle.

• A global reduction occurs when multiple data are combined using a
combination operator (as in +=, -=, &&, ||, etc.).

• A scatter operation sends data to the threads of a remote bundle. This
happens when the router expression is on the left side of an assignment
statement.

• A gather operation fetches data from the threads of a remote bundle. This
occurs when the router expression is on the right side of an assignment
statement.

• In communications operations, computing the identifiers of remote threads
takes a fair amount of time. aCe allows a programmer to define a path
description as a variable that is computed at run time. A path is computed
once at its assignment statement, and it is used (as many times as
necessary) by placing a ‘@’ symbol before the name of the path (each
time the path is used).

 86

Chapter 6: More on Thread Communication

6.1 Scatter and Gather Operations

Now that we have discussed different types of addressing, we use a
variety of path descriptions in more examples of thread communication. Here,
we discuss scatter and gather operations.

Data is fetched from or sent to the threads of a remote bundle depending
on whether the router expression is on the right or left side of an assignment. If
the router expression is on the right side of an assignment, it is a gather from the
remote threads. If the expression is on the left side of an assignment, it is a
scatter to the remote threads.

The following is an example of a gather operation.

threads {{D[1],E[5]} C[1],{F[3]} B[2]} A[3];
E.{
 int a,x,y;
 B int b;
 a = .C.A[x].B[y].(b+1);
}

The value of ‘b+1’ of the remote thread of ‘B’ is assigned to ‘a’ of the current
thread of ‘E’. Reversing the sides of an assignment makes it a scatter operation.

threads {{D[1],E[5]} C[1],{F[3]} B[2]} A[3];
E.{
 int a,x,y;
 B int b;
 .C.A[x].B[y].(b+1) = a;
}

The value of ‘a’ in ‘E’ is sent to the specified remote thread ‘b+1’ of ‘B’. If a
scatter add operation such as

threads {{D[1],E[5]} C[1],{F[3]} B[2]} A[3];
E.{
 int a,x,y;
 B int b;
 .C.A[x].B[y].(b+1) += a;
}

 87

is performed, and multiple values are sent to the same thread, they are summed
together. Since more than one thread can send a value to the same destination
thread, the data will either have to be combined, or some will be lost. Therefore,
when data is sent to another thread, there are several options for combination
into the remote location, such as addition (+=), subtraction (-=), and (&=), or
(|=), exclusive or (^=), minimum (?<=), and maximum (?>=).

No matter what type of addressing is used, a scatter operation returns a
flag to the expression in which it is contained, rather than a value. This flag
indicates whether or not the value being sent actually was received at the
destination thread. For example, in this code

threads {{D[1],E[5]} C[1],{F[3]} B[2]} A[3];
E.{
 int a,x,y;
 B int b;
 flag = (.C.A[x].B[y].(b+1) = a);
}

the values of ‘a’ in the bundle ‘E’ are being sent to the variables ‘b’ in bundle ‘B’.
The value of the flag, after the values have been sent, is TRUE (1) if the specific
value of ‘a’ actually reached the requested instance of ‘b’, and FALSE (0) if it did
not. There are two reasons a value may not reach its destination:

1. the address of the destination thread is not valid, or
2. the scatter operation is ‘=’.

If the scatter operation is ‘=’, at most one value will be received by any
destination thread. Therefore, only one of the source threads that send to the
same destination thread will have its value received and its receive flag set to
TRUE.

Here is a sample program to show you how the flag works.

/*
 Sample aCe Program
 Demonstrates the flag in a scatter operation

 Michelle L. McCotter
*/
#include <stdio.aHr>
#define sizeA 3
#define sizeB 2
#define sizeC 1
#define sizeD 2
#define sizeE 4
#define sizeF 3
threads {{D[sizeD],E[sizeE]} C[sizeC],{F[sizeF]} B[sizeB]}
 A[sizeA];

int main() {

 88

 F int f;

 E.{
 int VAR,x1,x2,x3,X1abs,X2abs,X3abs,addr,flag;
 int temp; /* temp is used for temporary storage
 throughout program */
 VAR = $$i;
 x1 = 0;
 x2 = 0;
 x3 = 0;
 addr = .A[x1].B[x2].F[x3].$$i;
 F.{ f = -1; }
 flag = (.A[x1].B[x2].F[x3].f = VAR);
 if ($$i == 0) printf("$$i Rel Address flag VAR”
 "f addr Abs Address\n"
 "----------------------------"
 "--------------------------\n",
 x1,x2,x3,x1,x2,x3);
 X3abs = (addr)%(sizeF); /* relative thread identifier
 of F thread (w/in F bundle
 under each A thread) */
 temp = (addr)/(sizeF);
 X2abs = (temp)%(sizeB); /* thread identifier of the
 B thread */
 temp = (temp)/(sizeB);
 X1abs = (temp)%(sizeA);
 printf("%2d .A[%d].B[%d].F[%d] %3d%5d%4d%4d "
 " A[%d].B[%d].F[%d]\n",
 $$i,x1,x2,x3,flag,VAR,
 .A[x1].B[x2].F[x3].f,addr,
 X1abs,X2abs,X3abs);
 }
 MAIN.{ printf("\n"); }
 F.{
 MAIN.{ printf("\nB threads\n---------\n"); }
 printf("$$i = %2d f = %3d\n",$$i,f);
 }
 return 0;
}

Program 6.1: Demonstrates the flag in a scatter operation.

Program 6.1 prints out the following output.

 89

$$i Rel Address flag VAR f addr Abs Address
--
 0 .A[0].B[0].F[0] 1 0 0 0 A[0].B[0].F[0]
 1 .A[0].B[0].F[0] 1 1 1 1 A[0].B[0].F[1]
 2 .A[0].B[0].F[0] 1 2 2 2 A[0].B[0].F[2]
 3 .A[0].B[0].F[0] 0 3 0 0 A[0].B[0].F[0]
 4 .A[0].B[0].F[0] 1 4 4 10 A[1].B[1].F[1]
 5 .A[0].B[0].F[0] 1 5 5 11 A[1].B[1].F[2]
 6 .A[0].B[0].F[0] 1 6 6 9 A[1].B[1].F[0]
 7 .A[0].B[0].F[0] 0 7 4 10 A[1].B[1].F[1]
 8 .A[0].B[0].F[0] 1 8 8 14 A[2].B[0].F[2]
 9 .A[0].B[0].F[0] 1 9 9 12 A[2].B[0].F[0]
10 .A[0].B[0].F[0] 1 10 10 13 A[2].B[0].F[1]
11 .A[0].B[0].F[0] 0 11 8 14 A[2].B[0].F[2]

B threads

$$i = 0 f = 0
$$i = 1 f = 1
$$i = 2 f = 2
$$i = 3 f = -1
$$i = 4 f = -1
$$i = 5 f = -1
$$i = 6 f = -1
$$i = 7 f = -1
$$i = 8 f = -1
$$i = 9 f = 6
$$i = 10 f = 4
$$i = 11 f = 5
$$i = 12 f = 9
$$i = 13 f = 10
$$i = 14 f = 8
$$i = 15 f = -1
$$i = 16 f = -1
$$i = 17 f = -1

The first table lists several values for each ‘E’ thread. It lists the relative address
and corresponding absolute address for each thread, so that you can see which
absolute addresses correspond to the relative address for each thread. The
‘addr’ value listed is simply the $$i of the ‘F’ threads corresponding to the
absolute address. The table also lists values for ‘flag’, ‘VAR’, and ‘f’. ‘VAR’ is
the value sent from each ‘E’ thread to the ‘f’ of some ‘F’ thread, and ‘f’ is the
value each ‘F’ thread received from an ‘E’ thread. If flag=1, then VAR=f, and if
flag=0, then VAR≠f.

The second table lists the values of ‘f’ for each ‘F’ thread. In program 6.1, we
initialize each ‘f’ with a value of –1, so that we can clearly see whether or not

 90

this value is modified with the scatter operation. The individual threads that have
modified values for ‘f’ correspond to the variable ‘addr’ in the first table.

Exercise 6.1: Study the output of program 6.1. Can you predict
the flag values for each thread of ‘E’, based on the
relative addresses? (Hint: What happens when the
remote addresses of two different threads refer to
the same thread? In other words, what happens
when two local threads attempt to write to the same
remote thread?)

Solution: If two or more local threads attempt to send values to the

same remote thread, then the remote thread will receive
the value from the local thread with the smallest $$i.
The flag value for that smallest $$i will be 1 (since the
value was received), and it will be 0 for the other local
threads (that tried to send a value to the same remote
thread).

Exercise 6.2: If, in program 4.5, sizeF was 2 instead of 3, and
the relative address for each thread were
.A[0].B[0].F[0], which threads of ‘E’ would
have flag=1? Which would have flag=0? We
include a diagram to help you see the structure of
the bundles of threads. Remember that the method
of addressing used here is relative addressing.

Figure 6.1: Bundles of threads created by the declaration
 threads {{D[1],E[5]} C[1],
 {F[3]} B[2]} A[3];

If the relative address for each thread were
.A[1].B[1].F[1], which threads of ‘E’ would

 91

have flag=1? Which would have flag=0? What if
the relative address were .A[0].B[0].F[1]?

Solution: No matter what relative address is used, as long as it is

of the form .A[x1].B[x2].F[x3], the flag values
are as follows.

$$i flag

 0 1
 1 1
 2 0
 3 0
 4 1
 5 1
 6 0
 7 0
 8 1
 9 1
10 0
11 0

Can you explain why changing the values of ‘x1’, ‘x2’, or
‘x3’ in the relative address does not affect the flag
values? (Hint: If you change the x-values, how does
this change the remote threads?)

6.2 Pre-computed Paths

A fair amount of time spent in a communications operation may be spent
computing the identifiers of the remote threads involved in the communications.
The ability to define a path description as a variable that is computed at run time
allows a path description to be pre-computed and optimized once, and yet used
many times. This minimizes the cost of computing a path descriptor, especially
when the descriptor is used multiple times. A path is declared in the following
manner.

threads H[4];
threads {B[5]} C[5];
H.{
 path(B) toB;
 int a0,a1,a2,x,y;
 B int b0,b1,b2;
 toB=C[x].B[y].;
 @toB.b0=a0;
 @toB.b1=a1;

 92

 @toB.b2=a2;
}

The path ‘toB’ is a path from the local context of ‘H’ to the remote context of ‘B’.
It is created by using the keyword ‘path’. Inside the parentheses is the name of
the bundle of threads for which the path will be used. The path is given a value
with an assignment statement. The address in the assignment statement must
be terminated by a period (.), or a compiler error will result. Each time ‘toB’ is
used, the programmer must place an ‘@’ symbol before the name of the path.
Note in the example code that ‘toB’ is computed once (for each thread of ‘H’) but
is used in three communications operations.

Many engineering applications require the computation of the sum of
nearest neighbors. The following program uses four different pre-computed
paths, named ‘North’, ‘South’, ‘East’, and ‘West’, to compute the sum of the
nearest neighbors for each PE in a two-dimensional array of processing
elements.

/*
 aCe program
 Sum of nearest neighbors using pre-computed paths

 Maurice F. Aburdene
 John E. Dorband
*/
#include <stdio.aHr>
#define size 8
threads A[size][size];

int main () {
 A.{
 path(A) North, South, East, West ; /* define paths */
 int a,b;
 a = $$i;

 /* Computing the paths */
 /* Relative addressing is wrap-around, so the
 “East” thread of the last thread in a row is
 actually the first thread in that same row. There
 is a similar pattern for North, South, and West.
 */

 North = .A[-1][0]. ;
 South = .A[1][0]. ;
 East = .A[0][1]. ;
 West = .A[0][-1]. ;

 /* Performing sum using the paths for a subset of
 local threads */
 b = @North.a + @South.a + @East.a + @West.a ;

 93

 MAIN.{ printf("\n $$i for Bundle of 'A'Threads\n"
 "-------------------------------\n"); }
 printf ("%3d%c",a,($$ix[0]==(size-1))?'\n':' ');
 MAIN.{ printf("\n Sums of Surrounding Points\n"
 "-------------------------------\n"); }
 printf ("%3d%c",b,($$ix[0]==(size-1))?'\n':' ');
 }
 return 0;
}

Program 6.2: Uses pre-computed paths to compute the sum of the nearest
neighbors.

Program 6.2 has the following output.

 $$i for Bundle of 'A' Threads

 0 1 2 3 4 5 6 7
 8 9 10 11 12 13 14 15
 16 17 18 19 20 21 22 23
 24 25 26 27 28 29 30 31
 32 33 34 35 36 37 38 39
 40 41 42 43 44 45 46 47
 48 49 50 51 52 53 54 55
 56 57 58 59 60 61 62 63

 Sums of Surrounding Points

 72 68 72 76 80 84 88 84
 40 36 40 44 48 52 56 52
 72 68 72 76 80 84 88 84
104 100 104 108 112 116 120 116
136 132 136 140 144 148 152 148
168 164 168 172 176 180 184 180
200 196 200 204 208 212 216 212
168 164 168 172 176 180 184 180

The first array that prints out is the array comprised of the logical thread
identifiers of the ‘A’ threads. In the second array, for each thread in ‘A’, we
compute the sum of the North, East, South, and West logical thread
identifiers. (Note: The logical identifier for the individual thread itself is not
included in the sum.) For example, the value printed out for A[0][0] (72) is
obtained by adding the identifiers of the North thread (56), the East thread (1),
the South thread (8) and the West thread (7). 56+1+8+7=72.

 94

6.3 Using Pre-Computed Paths to Build a Pascal Matrix

Pascal’s matrix plays an important role in signal processing, image
processing, image coding, and statistics. We can use pre-computed paths to
create Pascal’s matrix, as the following program demonstrates.

/*
 Sample aCe program
 Program to form Pascal's matrix
 Two-dimensional bundle of threads

 Maurice F. Aburdene
 John E. Dorband
*/
#include <stdio.aHr>
#define size 5
threads A[size][size] ;

int main () {
 A int a, i;
 A path(A) North, East;
 A.{
 a=0;
 /* set thread A[0][0].a to 1 */
 if (($$ix[0]==0) && ($$ix[1]==0)) a=1;

 /* $$ix[0] gives the column address */
 /* $$ix[1] gives the row address */
 for(i=1;i<(2*size-1);i++) {
 /* selects a i-th diagonal of the matrix */
 if (($$ix[0]+$$ix[1])==i) {
 /*.A[0][-1]. is relative addressing, which
 is toroidal or wrap around. Therefore,
 the previous column of the 1st column is
 the last column */
 North = .A[0][-1].;
 /* fetches value from previous column,
 same row */
 East = .A[-1][0].;
 /* fetches value from previous row, same
 column */
 a = @North.(a) + @East.(a);
 }
 }
 MAIN.{ printf("%dx%d Pascal Matrix\n"
 "-----------------\n",size,size); }
 printf ("%2d%c",a,($$ix[0]==(size-1))?'\n':' ');
 }

 95

 return 0;
}

Program 6.3: Creates Pascal’s matrix using a two-dimensional bundle of
threads and relative addressing.

The program creates a bundle of threads, laid out as follows.

Figure 6.2: Structure of the bundle of ‘A’ threads created by program 6.3.

Each of these ‘A’ threads has a storage location named ‘a’. Initially, all of those
storage locations equal zero. In program 6.3, we first set A[0][0].(a)=1, like
this.

Figure 6.3: Setting A[0][0].a = 1.

Then, we enter the for loop. In this loop, we have a counter, ‘i’, that is used to
make different ‘A’ threads inactive, depending on how many times we have gone
through the loop. Each time through the loop, we modify the values of ‘a’ of the
threads for which $$ix[0]+$$ix[1]=i. For the first time through the loop
(i=1), the only active threads are the ones lying along the following diagonal.

 96

Figure 6.4: Diagonal of active threads for the first time through the for loop in
program 6.3.

Only the threads lying along the diagonal are active during this pass through the
for loop. After this pass through the loop, the ‘a’ values for the bundle of ‘A’
threads are as follows.

Figure 6.5: Values of ‘a’ for the ‘A’ threads after one pass through the for loop in
program 6.3.

As the program progresses, the ‘a’ values along the following diagonals are
progressively updated during successive passes through the for loop.

Figure 6.6: Diagonals corresponding to the ‘A’ threads with
($$ix[0]+$$ix[1]=i) in the for loop for program 6.3.

Here is the Pascal matrix that the program creates.

 97

Figure 6.7: 5x5 Pascal matrix created by program 6.3.

Exercise 6.3: Using any editor you choose, enter program 4.8.
Copy the two printf statements from the end of
the program, and paste them inside the for loop,
after the terminating bracket of the if statement.
Compile and execute the program to see how the
Pascal matrix is created.

6.4 Arrays of Paths and Path Pointers

aCe allows the declaration of arrays of paths and pointers to paths.
Arrays of paths may also be declared as follows.

threads H[4];
threads {B[5]} C[5];
H.{
 path(B) toB[4];
 toB[0] = C[x-1].B[y-1].;
 toB[1] = C[x-1].B[y+1].;
 toB[2] = C[x+1].B[y-1].;
 toB[3] = C[x+1].B[y+1].;
 @toB[1].b1 = a1;
}

aCe allows pointers to paths as well. Two cases follow, demonstrating two
different assignment statements for path pointers.

Case #1:
threads H[4];
threads {B[5]} C[5];
H.{
 path(B) toB;
 path(B) *toBP;
 int a1;
 B int b1;
 toBP = &toB;

Case #2:
threads H[4];
threads {B[5]} C[5];
H.{
 path(B) toB[4];
 path(B) *toBP;
 int a1;
 B int b1;
 toBP = &toB[2];

 98

 @(*toBP).b1 = a1;
}

 @(*toBP).b1 = a1;
}

In case #1, we create a path and a path pointer. We then compute the address
of the path, and assign that address to the path pointer. In case #2, we create an
array of paths and a path pointer. Then, we assign the address of one element
of the array to the path pointer, because, after all, each address location is set up
to contain a path. We do not include an example here, but we could also
explicitly assign the value of one path pointer to another.

 An array element from a path array need not be enclosed in parentheses
when used, but a pointer to a path or any address expression that points to a
path does. A reduction address description cannot be assigned to a path. A
path assignment with any other path description is permitted (i.e. absolute
addressing, universal addressing, or relative addressing).

6.5 Summary

• A scatter operation sends data to the threads of a remote bundle. This
happens when the router expression is on the left side of an assignment
statement.

• A gather operation fetches data from the threads of a remote bundle. This
occurs when the router expression is on the right side of an assignment
statement.

• In communications operations, computing the identifiers of remote threads
takes a fair amount of time. aCe allows a programmer to define a path
description as a variable that is computed at run time. A path is computed
once at its assignment statement, and it is used (as many times as
necessary) by placing a ‘@’ symbol before the name of the path (each
time the path is used).

• When a path assignment is made, the address (on the right side of the
assignment statement) must be terminated by a period and semi-colon
(.;).

• aCe allows a programmer to create arrays of paths and path pointers.
When using a pointer to a path or an address expression that points to a
path, the pointer or address expression (which comprise the router

 99

expression) must be enclosed in parentheses. Parentheses are not
necessary when using path array elements.

 100

Chapter 7: Routines

7.1 Bundle-Specific Routines

In aCe, we refer to functions as routines. When we create a function, we
must specify the bundles of threads for which it may be used. aCe does not
allow multiple bundle specifiers; it allows routines to be bundle-specific, meaning
that a routine can be written for use only by one bundle of threads, and it allows
routines to be generic, meaning that a routine can be written for use by any
bundle of threads in a program. In this section, we focus on bundle-specific
routines.

The following program makes use of routines for printing out the system
constants, as we did in chapter 2.

/*
 Sample aCe program
 Program to print out the thread identifiers using
 bundle-specific routines

 Maurice F. Aburdene
 John E. Dorband
 Michelle L. McCotter
*/
#include <stdio.aHr>
threads A[4];

A void aCe_print_header(void)
{
 /* prints a header line for the sys constants */
 if ($$i == 0)
 printf("\nSystem constants for the `%s' threads\n"
 "------------------------------------"
 "\n",$$Name);
}

A void aCe_print_char(char *s,char *a)
{
 /* prints char strings from each thread of a bundle */
 if ($$i==0) printf("%s = ",s);
 /* Only one thread prints "a =" */
 printf(" %s",a);
 /* each thread prints its value of *a in the order of

 101

 its identifier */
 if ($$i==0) printf("\n");
 /* Only one thread prints "\n" */
}

A void aCe_print_int(char *s,int a)
{
 /* prints an integer from each thread of a bundle */
 if ($$i==0) printf("%s = ",s);
 /* Only one thread prints "a =" */
 printf("%2d ",a); /* each thread prints its value of a
 in the order of its identifier */
 if ($$i==0) printf("\n");
 /* Only one thread prints "\n" */
}

A void aCe_printEOL(void)
{
 /* prints one end of line character */
 if ($$i == 0)
 printf("\n");
}

int main () {
 A.{
 aCe_print_header();
 aCe_print_char("$$Name",$$Name);
 aCe_print_int("$$D ",$$D);
 aCe_print_int("$$N ",$$N);
 aCe_print_int("$$L ",$$L);
 aCe_print_int("$$i ",$$i);
 aCe_print_int("$$ii ",$$ii);
 aCe_print_int("$$Nx[0]",$$Nx[0]);
 aCe_print_int("$$Nx[1]",$$Nx[1]);
 aCe_print_int("$$Lx[0]",$$Lx[0]);
 aCe_print_int("$$Lx[1]",$$Lx[1]);
 aCe_print_int("$$ix[0]",$$ix[0]);
 aCe_print_int("$$ix[1]",$$ix[1]);
 aCe_printEOL();
 }
 return 0;
}

Program 7.1: Creates a one-dimensional bundle of threads and prints the
system constants for that bundle.

In this program, we declare the bundle of threads (threads A[4]) before we
create any routines. This is not always necessary. However, if a routine is
created for a particular bundle of threads, the threads declaration that includes
that bundle of threads must appear before the routine in a program. In program
7.1, after we declare the bundle of ‘A’ threads, we create four routines, specific to

 102

the bundle of ‘A’ threads. Then, in the function main(), we use the routines. Note
the output for the program, as follows.

System constants for the `A' threads

$$Name = A A A A
$$D = 1 1 1 1
$$N = 4 4 4 4
$$L = 2 2 2 2
$$i = 0 1 2 3
$$ii = 0 1 2 3
$$Nx[0] = 4 4 4 4
$$Nx[1] = 0 0 0 0
$$Lx[0] = 2 2 2 2
$$Lx[1] = 0 0 0 0
$$ix[0] = 0 1 2 3
$$ix[1] = 1 2 3 0

In chapter 2, we print the system constants for a one-dimensional bundle of
threads with program 2.4. We do the same thing here, though program 7.1 is
more clear.

Exercise 7.1: Write a program that uses bundle-specific routines to
create and print a 6x6 Pascal matrix. (Hint: Refer to
program 6.3 if you get stuck.)

Solution:

/*
 Sample aCe program
 Program to form Pascal's matrix
 Two dimensional bundle of threads
 Uses simple bundle-specific routines

 Maurice F. Aburdene
 John E. Dorband
 Michelle L. McCotter
*/
#include <stdio.aHr>
#define size 6
threads A[size][size];
A int a;

A void createMatrix(void) {
 /* creates a Pascal Matrix */
 path(A) North, East;
 int i;
 a=0;
 /* set thread A[0][0].a to 1 */
 if (($$ix[0]==0) && ($$ix[1]==0)) a=1;

 103

 for(i=1;i<(2*size-1);i++) {
 /* selects a i-th diagonal of the matrix */
 if (($$ix[0]+$$ix[1])==i) {
 North = .A[0][-1].;
 East = .A[-1][0].;
 a = @North.a + @East.a ;
 }
 }
}

A void printMatrix(void) {
 MAIN.{ printf(" %dx%d Pascal Matrix\n"
 "-----------------------"
 "\n",size,size); }
 printf ("%3d%c",a,
 ($$ix[0]==(size-1))?'\n':' ');
}

int main () {
 A.{
 createMatrix();
 printMatrix();
 }
 return 0;
}

Program 7.2: Uses simple bundle-specific routines to create a 6x6
Pascal matrix.

Programs 7.1 and 7.2 use simple bundle-specific routines, “bundle-
specific” meaning that the routines are created for use by only one bundle, and
“simple” meaning that the routine is executed without inter-processor
communication. Bundle-specific routines that use inter-processor communication
are called complex bundle-specific routines. Complex bundle-specific routines
can have a bundle of threads as one of its arguments, but the bundle must be a
generic bundle. This means that any bundle could be used as an argument.
Complex bundle-specific routines with bundle-specific arguments are not allowed
in aCe. In fact, they do not make sense because any routine can create an
execution context for any bundle of threads, without that bundle having to be
passed into the routine as an argument. So it does not make sense to create a
complex bundle-specific routine with an argument that is bundle-specific.
However, it does make sense to have a generic bundle as an argument in a
complex bundle-specific routine. We provide an example this after we discuss
generic routines in the next section.

 104

7.2 Simple Generic Routines

Most routines are specific to only one bundle. Some, however, are useful
to many bundles. These are referred to as generic routines. A generic routine is
declared by preceding it with the keyword ‘generic’ in place of a specific bundle
name. Trigonometric functions are examples of such routines. There is nothing
about a sine function, for example, that makes it inherently specific to any
bundle. A sine function can be applied to all threads of a bundle, and is trivially
parallel (i.e. requires no communication between threads.) This makes it a
simple generic routine, and allows it to be executed within the context of any
bundle. An example of a simple generic routine is the following.

generic double sin(double x) { /* C code */ }

We can use simple generic routines in a modified version of program 7.1
to print out the system constants for any bundle of threads, as shown in the
program that follows.

/*
 Sample aCe program
 Program to print out the thread identifiers
 using generic routines

 Maurice F. Aburdene
 John E.Dorband
 Michelle L. McCotter
*/
#include <stdio.aHr>
threads {B[3]} A[4];

generic void aCe_print_header(void)
{
/* prints a header line for the sys constants */
 if ($$i == 0)
 printf("\nSystem constants for the `%s' threads\n"
 "------------------------------------"
 "\n",$$Name);
}

 105

generic void aCe_print_char(char *s,char *a)
{
/* prints char strings from each thread of a bundle */
 if ($$i==0) printf("%s = ",s);
 /* Only one thread prints "a =" */
 printf(" %s",a);
 /* each thread prints its value of *a in the
 order of its identifier */
 if ($$i==0) printf("\n");
 /* Only one thread prints "\n" */
}

generic void aCe_print_int(char *s,int a)
{
/* prints an integer from each thread of a bundle */
 if ($$i==0) printf("%s = ",s);
 /* Only one thread prints "a =" */
 printf("%2d ",a);
 /* each thread prints its value of a in the order
 of its identifier */
 if ($$i==0) printf("\n");
 /* Only one thread prints "\n" */
}

generic void aCe_printEOL(void)
{
/* prints one end of line character */
 if ($$i == 0)
 printf("\n");
}

int main () {
 A.{
 aCe_print_header();
 aCe_print_char("$$Name",A.$$Name);
 aCe_print_int("$$D ",A.$$D);
 aCe_print_int("$$N ",A.$$N);
 aCe_print_int("$$L ",A.$$L);
 aCe_print_int("$$i ",A.$$i);
 aCe_print_int("$$ii ",A.$$ii);
 aCe_print_int("$$Nx[0]",A.$$Nx[0]);
 aCe_print_int("$$Nx[1]",A.$$Nx[1]);
 aCe_print_int("$$Lx[0]",A.$$Lx[0]);
 aCe_print_int("$$Lx[1]",A.$$Lx[1]);
 aCe_print_int("$$ix[0]",A.$$ix[0]);
 aCe_print_int("$$ix[1]",A.$$ix[1]);
 aCe_printEOL();
 }

 B.{
 aCe_print_header();
 aCe_print_char("$$Name",B.$$Name);
 aCe_print_int("$$D ",B.$$D);
 aCe_print_int("$$N ",B.$$N);
 aCe_print_int("$$L ",B.$$L);

 106

 aCe_print_int("$$i ",B.$$i);
 aCe_print_int("$$ii ",B.$$ii);
 aCe_print_int("$$Nx[0]",B.$$Nx[0]);
 aCe_print_int("$$Nx[1]",B.$$Nx[1]);
 aCe_print_int("$$Nx[2]",B.$$Nx[2]);
 aCe_print_int("$$Lx[0]",B.$$Lx[0]);
 aCe_print_int("$$Lx[1]",B.$$Lx[1]);
 aCe_print_int("$$Lx[2]",B.$$Lx[2]);
 aCe_print_int("$$ix[0]",B.$$ix[0]);
 aCe_print_int("$$ix[1]",B.$$ix[1]);
 aCe_print_int("$$ix[2]",B.$$ix[2]);
 aCe_printEOL();
 }
 return 0;
}

Program 7.3: Uses generic routines to print out the system constants of
bundles of bundles of threads.

When using generic routines in a program, the threads declaration does
not have to appear before the generic routines, but it can. Note that we use the
generic routines for both bundles of threads that we create. We could have used
the routines for the ‘MAIN’ thread, or any other bundle of threads we may have
chosen to create.

7.3 Bundle-Specific Routines Revisited

In this section, we return to our discussion of bundle-specific routines. As
we stated in section 7.1, it does not make sense to allow bundle-specific
arguments in a bundle-specific routine, since any routine can create an execution
context for any bundle of threads. However, it does make sense to allow generic
bundles as arguments. Say we are writing a program in which we want to allow
only ‘MAIN’ to issue print commands. Say, also, that we want to be able to print
out system constants for other bundles of threads. We can write a function that
is specific to ‘MAIN’ that prints out system constants for a generic bundle of
threads. Note the example program that follows.

 107

/*
 Sample aCe program
 Program to print out the thread identifiers
 using bundle-specific routines with generic arguments

 Maurice F. Aburdene
 John E.Dorband
 Michelle L. McCotter
*/
#include <stdio.aHr>
threads {B[3]} A[4];

MAIN void aCe_print_header(generic(OTHER))
{
 /* prints a header line for the sys constants */
 if ($$i == 0)
 printf("\nSystem constants for the '%s' threads\n"
 "------------------------------------"
 ",OTHER.$$Name);
}

MAIN void aCe_print_char(char *s,char *a,int ident)
{
 /* prints char strings from each thread of a bundle */
 if (ident==0) printf("\n%s = ",s);
 /* Only one thread prints "a =" */
 printf(" %s",a);
 /* each thread prints its value of *a in the
 order of its identifier */
}

MAIN void aCe_print_int(char *s,int a,int ident)
{
 /* prints an integer from each thread of a bundle */
 if (ident==0) printf("\n%s = ",s);
 /* Only one thread prints "a =" */
 printf("%2d ",a);
 /* each thread prints its value of a in the order
 of its identifier */
}

MAIN void aCe_printEOL(int ident)
{
 /* prints one end of line character */
 if (ident==0)
 printf("\n");
}

MAIN void aCe_printSysConst(generic(OTHER)) {
 int i;
 aCe_print_header(OTHER);
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_char("$$Name",OTHER.$$Name,i); }

 108

 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$D ",OTHER.$$D,i); }
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$N ",OTHER.$$N,i); }
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$L ",OTHER.$$L,i); }
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$i ",OTHER.$$i,i); }
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$ii ",OTHER.$$ii,i); }
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$Nx[0]",OTHER.$$Nx[0],i);}
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$Nx[1]",OTHER.$$Nx[1],i);}
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$Lx[0]",OTHER.$$Lx[0],i);}
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$Lx[1]",OTHER.$$Lx[1],i);}
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$ix[0]",OTHER.$$ix[0],i);}
 for (i=0; i<OTHER.$$N; i++) {
 aCe_print_int("$$ix[1]",OTHER.$$ix[1],i);}
 for (i=0; i<OTHER.$$N; i++) {
 aCe_printEOL(i); }
}

int main () {
 aCe_printSysConst(A);
 aCe_printSysConst(B);
 return 0;
}

Program 7.4: Uses bundle-specific routines with generic bundle arguments to
print out system constants of different bundles of threads.

Each one of the aCe_print routines was a bundle-specific designed only
for the ‘MAIN’ thread. By passing a generic bundle in as an argument in the
function aCe_printSysConst, we allow ‘MAIN’ to print the system constants of
any bundle of threads. No other bundle besides ‘MAIN’ is allowed to use the print
functions that we have designed in this program, although other threads could
use the printf command.

As you might expect, the output is as follows. It is very similar to the
output for program 7.3. The only difference is that we did not write code to
enable program 7.3 to print out all of the system constants for various thread
bundles with different dimensions.

 109

System constants for the 'A' threads

$$Name = A A A A
$$D = 1 1 1 1
$$N = 4 4 4 4
$$L = 2 2 2 2
$$i = 0 0 0 0
$$ii = 0 0 0 0
$$Nx[0] = 4 4 4 4
$$Nx[1] = 0 0 0 0
$$Lx[0] = 2 2 2 2
$$Lx[1] = 0 0 0 0
$$ix[0] = 0 1 2 3
$$ix[1] = 1 2 3 0

System constants for the 'B' threads

$$Name = B B B B B B B B B B B B
$$D = 1 1 1 1 1 1 1 1 1 1 1 1
$$N = 12 12 12 12 12 12 12 12 12 12 12 12
$$L = -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
$$i = 0 0 0 0 0 0 0 0 0 0 0 0
$$ii = 0 0 0 0 0 0 0 0 0 0 0 0
$$Nx[0] = 3 3 3 3 3 3 3 3 3 3 3 3
$$Nx[1] = 0 0 0 0 0 0 0 0 0 0 0 0
$$Lx[0] = -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
$$Lx[1] = 0 0 0 0 0 0 0 0 0 0 0 0
$$ix[0] = 0 1 2 0 1 2 0 1 2 0 1 2
$$ix[1] = 1 2 0 1 2 0 1 2 0 1 2 0

7.4 Complex Generic Routines

Now, we return to our discussion of generic routines can also include
inter-processor communication. These are complex generic routines. A complex
generic routine can also have a bundle of threads as one of its arguments. To
pass a bundle into a generic routine other than the bundle of the execution
context, one prefixes the argument with the keyword ‘generic’, as in the
following code.

generic double func(generic(OTHER), double x, OTHER int y)
{
 int a,b;
 OTHER int c,d;
 a = OTHER[b].d;
}

 110

The bundle passed into the routine is ‘OTHER’. Note that variables ‘x’, ‘a’,
and ‘b’ belong to the context bundle, and variables ‘y’, ‘c’, and ‘d’ belong to the
bundle passed in as ‘OTHER’. To pass a bundle description into a complex
generic routine, the bundle name is the argument, as in the code that follows.

threads A[200];
threads B[400];
A.{
 double a,b;
 B int c;
 a = func(B,b,c);
}

Function ‘func’ is called by bundle ‘A’ and is passed the bundle ‘B’. Note

that ‘b’ is a variable of bundle ‘A’ and ‘c’ is a variable of bundle ‘B’. We include
the following program, building off of previous programs in the chapter, to
demonstrate the use of complex generic routines.

/*
 Sample aCe program
 Program to print out the thread identifiers
 using complex generic routines

 Maurice F. Aburdene
 John E.Dorband
 Michelle L. McCotter
*/
#include <stdio.aHr>
threads {B[3]} A[4];

generic void aCe_print_header(void)
{
 /* prints a header line for the sys constants */
 if ($$i == 0)
 printf("\nSystem constants for the '%s' threads\n"
 "------------------------------------"
 "\n",$$Name);
}

generic void aCe_print_char(char *s,char *a)
{
 /* prints char strings from each thread of a bundle */
 if ($$i==0) printf("%s = ",s);
 /* Only one thread prints "a =" */
 printf(" %s",a);
 /* each thread prints its value of *a in the
 order of its identifier */
 if ($$i==0) printf("\n");
 /* Only one thread prints "\n" */

 111

}

generic void aCe_print_int(char *s,int a)
{
 /* prints an integer from each thread of a bundle */
 if ($$i==0) printf("%s = ",s);
 /* Only one thread prints "a =" */
 printf("%2d ",a);
 /* each thread prints its value of a in the order
 of its identifier */
 if ($$i==0) printf("\n");
 /* Only one thread prints "\n" */
}

generic void aCe_printEOL(void)
{
 /* prints one end of line character */
 if ($$i == 0)
 printf("\n");
}

generic void aCe_printSysConst(generic(OTHER)) {
 OTHER.{
 aCe_print_header();
 aCe_print_char("$$Name",$$Name);
 aCe_print_int("$$D ",$$D);
 aCe_print_int("$$N ",$$N);
 aCe_print_int("$$L ",$$L);
 aCe_print_int("$$i ",$$i);
 aCe_print_int("$$ii ",$$ii);
 aCe_print_int("$$Nx[0]",$$Nx[0]);
 aCe_print_int("$$Nx[1]",$$Nx[1]);
 aCe_print_int("$$Lx[0]",$$Lx[0]);
 aCe_print_int("$$Lx[1]",$$Lx[1]);
 aCe_print_int("$$ix[0]",$$ix[0]);
 aCe_print_int("$$ix[1]",$$ix[1]);
 aCe_printEOL();
 }
}

int main () {
 aCe_printSysConst(A);
 aCe_printSysConst(B);
 return 0;
}

Program 7.5: Uses simple and complex generic routines to print system
constants of different bundles of threads.

Program 7.5 has the same output as program 7.4. We list the output in section
7.3.

 112

Exercise 7.2: Practice writing a variety of aCe routines. Either
write your own new programs, or modify programs
shown in the tutorial by replacing our code with
bundle-specific or generic routines.

A generic or an “argument passed” bundle can have multiple dimensions.

The sizes of the dimensions may either be specified as in case one, or
unspecified as in case two.

Case 1: generic(OTHER[2][500][30])
Case 2: generic(OTHER[][][])

Case one will only allow bundles with dimensions [2][500][30] to be passed
as an argument, while case two will allow any three-dimensional bundle to be
passed. A bundle being passed as an argument must have the same number of
dimensions as the generically declared bundle.

If the generically declared bundle does not specify any dimensions, then a
bundle with any number of dimensions may be passed, but it will be treated as a
one-dimensional bundle. The index value of this array may range from zero to
the value of $$N-1 of the bundle. A generically declared bundle may also
specify the child bundles it must have to be passed. All bundles of the passed
bundle must have at least as many child bundles and the same number of
dimensions as the argument bundle. Also, the sizes of the dimensions must be
specified and have the same values. For case three, ‘A’ and ‘C’ are valid passed
bundles for ‘OTHER’; bundles ‘B’, ‘D’, and ‘E’ are not.

threads {a[2],b[4][6]} A[200];
threads {d[2],e[5][6]} B[400];
threads {f[2],g[4][6],h[5]} C[300];
threads {j[2],k[4],m[5]} D[300];
threads {n[2],p[5],q[4][6]} E[300];
Case 3: generic{{y[2],z[4][6]} OTHER)

‘A’ is an exact match. ‘B’ is invalid because ‘e’ does not have the same
dimension size as the generic function requires. ‘C’ is valid, even through it has
three children. Remember, all bundles of the passed bundle must have at least
as many child bundles. For ‘C’, the third child is simply ignored since ‘f’ matches
‘y’ and ‘g’ matches ‘z’. ‘D’ is invalid because ‘k’ only has one dimension. ‘E’ is
invalid even though children of the right size exist; the reason is that they are not
the first two children of ‘E’.

The context bundle (meaning the bundle of the current execution context)
may also be passed to the routine by name. This is done using the same syntax
as declaring a bundle to be passed by argument, except it replaces the keyword
‘generic’ preceding the routine declaration as in case four.

Case 4: generic{{y[2],z[4][6]} OTHER)

 113

 double FUNC(double x) { /* C Code */ }

In case four, the context bundle in which ‘FUNC’ is called must be of the form
‘OTHER’, as if it were a passed bundle. Without this capability, the context bundle
would not be able to be referenced explicitly. This is not a problem with functions
like trigonometric functions that require no inter-thread communications.
However, it would be for, say, a generic FFT routine (Fast Fourier Transform
routine). Any bundle that has been explicitly declared as a bundle argument or
as a generic bundle context may be used within the context of the function as
any bundle specification can be used.

Exercise 7.3: Experiment with generic routines by writing your own
programs, and observing what compiler errors result.

7.5 The Virtual/Scalar Distinction

So far, the programmer has been presented with a view of a variable
declared over a bundle as having an independent value for every thread of that
bundle. This can lead to extreme inefficiency of both memory and compute
cycles if implemented to its logical conclusion. The aCe language is designed to
maintain the illusion that each thread has its own storage for each variable, but is
implemented in a way that takes advantage of variables that have the same
value in every thread (a scalar value). This is done by recognizing variables that
are assigned only constants or other scalar variables. These variables are
designated as ‘scalar’. If each thread had its own storage location for a
particular variable, say ‘i’ for a loop counter, this would lead to great
inefficiencies. So aCe does not provide separate storage for every variable for
each thread. If a given variable is scalar, however, this does not mean that there
is exactly one storage location for that variable. That would lead to inefficiencies
as well. aCe compromises between the two ideas, providing a program with as
many storage locations for scalar variables as necessary, perhaps more than
one but less than the total number of threads (the number of instances of that
variable).

Most other variables are designated as ‘virtual’. It would not be
necessary to make the programmer aware of this in general, except for the fact
that aCe interfaces with the native programming environment. By native
programming environment, we mean a language other than aCe that is native to
a machine, like ANSI C, for example. aCe allows a programmer to create links to
C routines in an aCe program. However, the routines developed under the
native programming environment (i.e. C routines) expect parameters and return

 114

values of specific types, either scalar or virtual, but not both. C does not
implement variables in the same way as aCe does, with the same flexibility for
scalar values. Therefore, when a native code routine is declared within aCe (to
link aCe to a C routine, for example), the arguments and parameters must be
explicitly designated as either scalar or virtual. Variables used in aCe routines
created for an aCe program do not have to be designated as either scalar or
virtual; the aCe compiler takes care of this on its own.

7.6 Summary

• A routine is simply another name for a function.

• Routines in aCe can either be bundle-specific routines or generic routines.
Bundle-specific routines can only be called and used by one bundle of
threads; generic routines can be used by any bundle of threads.

• Simple generic routines do not involve inter-processor communication.
Complex generic routines, on the other hand, do.

• A complex routine (bundle-specific or generic) can have, but does not
need to have, another bundle of threads as one of its arguments.

• In a complex routine, a generic bundle (used as an argument) can have
multiple dimensions. The sizes of the dimensions may or may not be
specified.

• aCe gives the programmer the illusion that each thread has its own copy
of every variable. However, with scalar variables, there are most likely
fewer copies of the variable than there are instances of the variable (one
instance for each thread), but there can be more than one copy, in order
to make execution more efficient when different processors are involved.

• When linking an aCe program to routines in the native programming
environment, the arguments and parameters in the aCe declaration must
be explicitly designated as either scalar or virtual.

 115

Chapter 8: Thread Alignment

8.1 Virtual Processor Alignment

When a bundle of threads is created, the threads are distributed across
the physical processors in a default manner specific to the given architecture. If
no realignment is specified for the bundle of threads, the default distribution will
be unchanged, and the values of $$i (the logical thread identifier) and $$ii (the
physical thread identifier) will be equal for every thread in the bundle, which we
have seen in every discussion of the system constants so far. This often does
not represent a very effective arrangement given the communications patterns of
a specific algorithm. The realignment statement allows for the rearrangement of
the threads across the physical processors relative to the default arrangement. It
is with this realignment statement that the values of $$i and $$ii can differ.

Actually, threads are mapped across physical processors in an order
dependent on the architecture. For example, an aCe program running on a PC
bundle running MPICH as its message passing protocol may distribute threads in
the following manner: given that there are ‘n’ threads to be distributed over ‘p’
processors and ‘d=n/p’, the first ‘d’ threads will be allocated to the first
processor, the second ‘d’ threads to the second processor, and so on until all
threads have been allocated. If ‘n’ is not evenly divisible by ‘p’, then ‘d=n/p+1’,
and the last processor will have ‘n mod p’ threads. The idea of realignment is to
re-map the logical thread identifier to a different physical thread identifier.

8.2 Realignment of Threads with Processors

Rearrangement is the permuting of logical thread relative to a fixed
arrangement of physical threads. In its simplest form, this is done by defining an
array of logical threads, and permuting the dimensions of the array. For
example, if we have a two-dimensional array, and we swap the two dimensions,
this is equivalent to performing a transpose on the elements of the array. The
following example shows how a transpose array of logical threads is defined.

threads X[32][32];
realign X[32][32]-->[32][32]; [0]-->[1]; [1]-->[0];;

 116

Realignment is described by a realignment descriptor statement. The
realignment keyword is ‘realign’, as shown in the preceding example code. It
is followed by the name of the bundle to be realigned. Next are two sets of
dimensions separated by an arrow (-->). The first set of dimensions describes
an array that represents how the logical identifiers are to be viewed. And the
second represents how the physical identifiers are to be viewed. In this example,
both the logical and the physical identifiers are represented by a 32x32 array of
threads. Following the array dimensions are the mappings. These mappings
map one or more logical dimensions to one or more physical dimensions. In this
case, there are two mappings, each consisting of one logical dimension mapped
to one physical dimension. The first mapping maps the least significant logical
dimension to the most significant physical dimension. The second maps the
most significant logical dimension to the least significant physical dimension.
Finally, the realignment statement is terminated by two semi-colons (;;). This
realignment effectively transposes the logical arrangement of threads relative to
the physical arrangement. This realign statement is equivalent to the following
code.

realign X[32][32]-->[32][32]; [0][1]-->[1][0];;

The following example uses C-like code to show how logical threads are
mapped to physical threads.

threads C[27][10];
realign X[6][9][5]-->[9][5][6];
[0]-->[1]; [1]-->[2]; [2]-->[0];;

The realignment description refers to a physical array of threads which could be
represented by P[9[5][6] and a logical array of threads represented by
L[6][9][5]. The previous dimension mapping describes how to change the
ordering of the dimensions of a multi-dimensional array (a generalized multi-
dimensional transpose). This description is equivalent to the following C-like
code describing the mapping of physical threads to logical threads.

int L[6][9][5], P[9][5][6];
for (I2=0;, I2<6; I2++) {
 for (I1=0; I1<6; I1++) {
 for (I0=0; I0<6; I0++) {
 L[I0][I2][I1] maps_to P[I2][I1][I0];
 }
 }
}

This simple form of the alignment statement allows for any form of
multidimensional array transposing relative to the default arrangement. The next

 117

form that we describe allows for changing from an array with one number of
dimensions to one of a different number of dimensions.

threads Y[100][100];
realign Y[100][100]-->[10][25][20][2];
[0][1]-->[1][3][2][0];;

In the preceding case, the logical array is defined as a 100x100 two-dimensional
array, and the physical array is a four-dimensional array of dimensions
10x25x20x2. The mapping (that follows the array declaration) says to map the
transpose of the logical array to an array of the physical thread whose
dimensions have been reordered to be [20][10][25][2]. This mapping
statement appears to request the reordering of the physical threads. In reality,
however, the physical threads will remain in the default order, and only the logical
threads will be reordered so that mapping from logical to physical is consistent
with the mapping statement.

Note that the original and the final arrays of threads are the same size.
This is not necessary. If the physical thread array size is larger than the logical,
the array is padded with inactive threads that never become active. If the logical
array is larger than the physical array size, then the final array descriptor is given
an additional most significant dimension large enough to make the physical array
just larger than the logical. In the following code, realignment statement #1 is
effectively equivalent to realignment statement #2.

threads Y[100][100];
Realignment Statement #1:
 realign Y[100][100]-->[32][32]; [1][0]-->[0][1];;
Realignment Statement #2:
 realign Y[100][100]-->[10][32][32]; [1][0]-->[2][0][1];;

There is one final form of the alignment state. The realignment description

describes not only how an array may be rearranged or reformed into another
array, but it can also be used to describe how sub-arrays may be reformed into
different sub-arrays. An alignment statement may consist of multiple mappings
that reorder subsets of the dimension, some of which have no explicitly defined
size.

threads Z[640][480];
realign Z[640][480]-->[][][64][32];
[1]-->[3][1]; [0]-->[2][0];;

The compiler will fill in the blank sizes. Dimensions with blank sizes may only be
used as most significant dimensions in a mapping array. The compiler will
translate the above realignment statement into the following.

 118

realign Z[640][480]-->[10][15][64][32];
[1]-->[3][1]; [0]-->[2][0];

For realignment to be of significant usefulness, the programmer will need to
determine the default arrangement of threads for the specific physical
architecture to which she wants to realign a bundle.

8.3 Summary

• When a programmer creates a bundle of threads, the threads are
distributed across physical processors in a default manner specific to the
given architecture.

• Values of $$i and $$ii are equal, unless a programmer issues a
realignment statement.

• A realignment descriptor statement describes realignment in a program.
The keyword is ‘realign’, and the statement is always terminated by two
semi-colons (;;).

• With realignment, it is not necessary for original and final arrays to be the
same size.

• Realignment descriptions can also describe how sub-arrays may be
reformed into different sub-arrays.

 119

Chapter 9: Applications

9.1 A Review of aCe

We include a chapter on applications of aCe to give you a review of the
ideas we have covered in the tutorial. The programs we have chosen to include
are not entirely comprehensive, but each program represents the implementation
of various aCe concepts.

9.2 Building a Binary Tree

aCe can be used quite easily to build a binary tree. Instead of using C to
create node structures with different data objects, in aCe we use a bundle of
threads with different variables. Study the program that follows.

/*
 Sample aCe program
 Program to create a binary tree ((2^N)-1 nodes)
 Sum children's values and parent's value for each parent
 using pre-computed paths
 One-dimensional bundle of threads

 Maurice F. Aburdene
 John E. Dorband
 Michelle L. McCotter
*/
#include <stdio.aHr>
#define N 4 /* 15 nodes */
threads A[(1<<N)-1] ;

int main () {
 A int level, id, P, L, R, sum0, sum1;
 A path(A) Parent, Left, Right ;

 A.{
 /* Create Tree */

 /* Determine to which level of the tree a thread
 belongs */
 id = $$i+1;

 120

 level=0;
 /* NOTE >>=1 is integer shift right one bit or divide
 by 2 */
 while ((id&1)==0) { /* for the least significant
 one bit of id */
 level++;
 id>>=1;
 }
 /* how many least significant zeros in id */

 /* L and R stand for left and right child
 respectively; if L = -1, there is no left child
 (same for R & right child) */
 /* leaf nodes are at level zero; root node is at the
 highest level */
 L=R=-1;
 if (level>0) {
 int a = (1 << (level - 1));
 L = $$i - a;
 R = $$i + a;
 }

 /* communicate to children who its parent is */
 P = -1; /* -1 means there is no parent */
 if (level > 0) {
 A[L].P = $$i ;
 A[R].P = $$i ;
 }

 /* Pre-compute paths to parent and left and right
 children */
 Parent = A[P]. ;
 Left = A[L]. ;
 Right = A[R]. ;
 /* sum values in children to parent's value */
 {
 int i;
 sum0=$$i;
 for(i=0;i<(N-1);i++) {
 sum1 = 0;
 if (level==i) {
 @Parent.sum1 += sum0;
 }
 sum0 += sum1;
 }
 MAIN.{ printf("\n$$i Lv L R P Sum\n"
 "--------------------------\n"); }
 printf("%3d %3d %3d %3d %3d %5d\n",
 $$i,level,L,R,P,sum0);
 }

 121

 }
 return 0;
}

Program 9.1: Uses a one-dimensional bundle of threads to create a binary
tree. Uses pre-computed paths to sum the logical thread
identifiers of each parent thread and all of its children.

Program 9.1 creates a binary tree structure like the diagram in figure 9.1.
Each node of the tree is represented by one of the threads in the bundle of fifteen
threads. We show each node by a box that encloses the logical thread identifier
of the node in standard numerical format, and again in binary format. The binary
value should allow you to more clearly see how program 9.1 assigns the left and
right children to each parent. Observe the tree structure, and study program 9.1
to make sure you understand how the binary tree is created.

Figure 9.1: Demonstrates the structure of a binary tree created by program 9.1.

The output for program 9.1 is as follows.

 122

$$i Lv L R P Sum

 0 0 -1 -1 1 0
 1 1 0 2 3 3
 2 0 -1 -1 1 2
 3 2 1 5 7 21
 4 0 -1 -1 5 4
 5 1 4 6 3 15
 6 0 -1 -1 5 6
 7 3 3 11 -1 105
 8 0 -1 -1 9 8
 9 1 8 10 11 27
 10 0 -1 -1 9 10
 11 2 9 13 7 77
 12 0 -1 -1 13 12
 13 1 12 14 11 39
 14 0 -1 -1 13 14

By comparing the output with figure 9.1, you will see that each thread’s value for
‘P’ is, indeed, correct. The value for ‘Sum’ is obtained by computing the sum of
each thread’s logical thread identifier and the logical thread identifiers of all of
that thread’s children. By “children”, we mean any node in the tree that is a
“descendant” of a given thread.

The facets of aCe demonstrated by program 9.1 are
• the ability of the programmer to use bundles of threads in creating

structures that best represent a problem solution,
• the creation of execution contexts for different bundles of threads (‘A’

and ‘MAIN’),
• the use of thread storage,
• the use of binary operations (which we did not go over in the tutorial),
• the application of universal addressing
• the creation and application of pre-computed paths, and
• the use of active and inactive threads.

9.3 Building a Ring

Thus far, we have not shown a ring structure. Here, we use thread
communication to build a ring. Observe the program that follows.

/*
 Communication on a ring
 aCe program

 123

 Maurice F. Aburdene
 John E. Dorband
 Michelle L. McCotter
*/
#include <stdio.aHr>
threads A[10];

int main () {
 A.{
 int Left, Right;
 /* Communicates from thread that has the next higher
 id */
 Left = .A[1].$$i;
 /* Communicates from thread that has the next lower
 id */
 Right = .A[-1].$$i ;
 MAIN.{ printf("\n$$i L R\n"
 "---------\n"); }
 printf("%3d %2d %2d\n",$$i,Left,Right);
 }
 return 0;
}

Program 9.2: Uses a one-dimensional bundle of threads and thread
communication to create a ring structure.

Program 9.2 creates a ring structure that looks something like figure 9.2.

Figure 9.2: The ring structure created by program 9.2.

Although we do not do anything with the ring structure itself, program 9.2
demonstrates how one could use aCe to create a ring. The program has the
following output.

 124

$$i L R

 0 1 9
 1 2 0
 2 3 1
 3 4 2
 4 5 3
 5 6 4
 6 7 5
 7 8 6
 8 9 7
 9 0 8

Note that the output matches the diagram.

Now, we include a more complicated program that uses an election
algorithm with a ring structure. Observe the following program.

/*
 Election algorithm on a ring
 aCe program

 Maurice F. Aburdene
 John E. Dorband
*/
#include <stdio.aHr>
#include <random.aHr>
threads A[10];

int main () {
 A.{
 int address, highest, active, h0, h1, direction,
 done, finish, count, total, sent ;
 highest=address=$$i;
 done=0;
 srand(477957);
 active=count=0;
 if (drand() > 0.5) {
 direction=0; active=1;
 }

 MAIN.{ printf("\nHt "); }
 printf("%2d ",highest);
 MAIN.{ printf("\n"); }
 MAIN.{ printf("\nAc "); }
 printf("%2d ",active);
 MAIN.{ printf("\n"); }

 finish=0; sent=0;
 while(! done) {
 MAIN.{ printf("\n"); }

 125

 if (active && (direction==0) && (!sent)) {
 if (drand() > 0.5)
 direction=1;
 else direction=-1;
 }

 h0=-1;
 /* Condition for senders */
 if (active && (direction == 1)) {
 .A[1].h0 = highest ;
 count++;
 sent=1;
 active=0;
 }
 /* Condition for receivers */
 MAIN.{ printf("\nh0 "); }
 printf("%2d ",h0);
 if ((h0>-1)) {
 /* if a processor received something */
 if (h0 == address)
 finish=1;
 else if (h0 > highest) {
 highest = h0 ;
 direction=1 ;
 active=1;
 sent=1;
 }
 else if (! sent) {
 direction=0 ;
 active=1;
 }
 }
 MAIN.{ printf("\nHt "); }
 printf("%2d ",highest);
 MAIN.{ printf("\nFn "); }
 printf("%2d ",finish);
 MAIN.{ printf("\nAc "); }
 printf("%2d ",active);
 MAIN.{ printf("\n"); }

 h0=-1;
 /* Condition for senders */
 if (active && (direction == -1)) {
 .A[-1].h0 = highest ;
 count++;
 sent=1;
 active=0;
 }
 /* Condition for receivers */
 MAIN.{ printf("\nh1 "); }
 printf("%2d ",h0);

 126

 if ((h0>-1)) {
 /* if a processor received something */
 if (h0 == address)
 finish=1;
 else if (h0 > highest) {
 highest = h0 ;
 direction=-1 ;
 active=1;
 sent=1;
 }
 else if (! sent) {
 direction=0 ;
 active=1;
 }
 }

 A.done |= finish ;
 MAIN.{ printf("\nHt "); }
 printf("%2d ",highest);
 MAIN.{ printf("\nFn "); }
 printf("%2d ",finish);

 MAIN.{ printf("\nAc "); }
 printf("%2d ",active);
 MAIN.{ printf("\n"); }

 }
 total=0;
 A.total+=count;
 MAIN.{ printf("\nTotal messages sent = %5d\n",
 A.total); }
 }
 return 0;
}

Program 9.3: Uses a bundle of threads to build a ring, and then uses an
election algorithm for message passing in the ring.

Program 9.3 uses a bundle of threads to create a ring, similar to program
9.2. Then, the program uses an election algorithm to do message passing. We
choose not to go into detail for program 9.3, but we include it as an example of
an aCe application. If you are interested, you can study the program to get an
idea of how the election algorithm works, and you can enter and execute the
program on your machine to experiment with the output.

The features of aCe shown in program 9.3 are
• the ability of the programmer to use bundles of threads in creating

structures that best represent a problem solution,
• the creation of execution contexts for different bundles of threads (‘A’

and ‘MAIN’),
• the use of thread storage,

 127

• the implementation of thread communication using relative addressing,
and

• the use of active and inactive threads.

9.4 Conclusion

By this point, you should understand aCe fairly well. As we conclude our
explanation of aCe and parallel computing, we would like to draw your attention
to one more thing. Throughout the tutorial, you have experienced one of the
fundamental strengths of aCe, perhaps without even realizing it. In every
program we have included, and in every program we have asked you to write, we
have never had to worry about issues of synchronization, or about performing
system calls. This is because the aCe compiler takes care of all those details,
allowing you to focus on the ideas of parallelism itself, rather than all the details
that go into parallel computing. In a way, this makes parallel programming much
easier.

If you are interested in understanding parallel programming even better, you may
go back and read the introduction again, or you may peruse our list of suggest
reading that follows.

 128

Suggested Reading

• Andrews, Gregory R. Foundations of Multithreaded, Parallel, and
Distributed Programming. Addison-Wesley Longman, Inc. 2000.

• Foster, Ian. Designing and Building Parallel Programs. Addison-Wesley,
Inc., Argonne National Library, and the NSF Center for Research on
Parallel Computation. http://www-unix.mcs.anl.gov/dbpp/. (31 July,
2002).

• Pagadala, Sashi. System Simulation and Image Enhancement Using
aCe. MSEE Thesis, Bucknell University, 2002.

 129

http://www-unix.mcs.anl.gov/dbpp/

Standard aCe C Library

Assert (assert.aHr)

(The libraries for 'assert' are not currently implemented.)

ctype (ctype.aHr)

generic int isalnum (int c);
generic int isalpha (int c);
generic int iscntrl (int c);
generic int isdigit (int c);
generic int isgraph (int c);
generic int islower (int c);
generic int isprint (int c);
generic int ispunct (int c);
generic int isspace (int c);
generic int isupper (int c);
generic int isxdigit (int c);
generic int tolower (int c);
generic int toupper (int c);

Error number (errno.aHr)

(The libraries for 'errno' are not currently implemented.)

Locale Routines (locale.aHr)

(The libraries for 'locale' are not currently implemented.)

 130

Math Routines (math.aHr)

generic double cos (double x);
generic double sin (double x);
generic double tan (double x);
generic double acos (double x);
generic double asin (double x);
generic double atan (double x);
generic double atan2 (double x, double y);
generic double sinh (double x);
generic double cosh (double x);
generic double tanh (double x);
generic double exp (double x);
generic double log (double x);
generic double log10 (double x);
generic double frexp (double value, int *e);
generic double ldexp (double value, int exp);
generic double modf (double value, double *iptr);
generic double pow (double base, double exp);
generic double sqrt (double x);
generic double floor (double x);
generic double ceil (double x);
generic double fmod (double x, double y);
generic double fabs (double x);

Scan Functions (scan.aHr)

generic int scan_and (int V, char M);
generic int scan_or (int V, char M);
generic int scan_xor (int V, char M);
generic int scan_add (int V, char M);
generic float f_scan_add (float V, char M);
generic double d_scan_add (double V, char M);
generic int scan_min (int V, char M);
generic float f_scan_min (float V, char M);
generic double d_scan_min (double V, char M);
generic int scan_max (int V, char M);
generic float f_scan_max (float V, char M);
generic double d_scan_max (double V, char M);

Set Jump (setjmp.aHr)

(The libraries for 'setjmp' are not currently implemented.)

 131

Signals (signal.aHr)

(The libraries for 'signal' are not currently implemented.)

Standard arguments (stdarg.aHr)

(The libraries for 'stdarg' are not currently implemented.)

Standard I/O (sdtio.aHr)

generic scalar FILE* fopen (scalar char *filename,
 scalar char *mode) ;
generic scalar int fflush (scalar FILE* stream) ;
generic scalar int fclose (scalar FILE* stream) ;
generic scalar int fread (virtual void *virtual ptr,
 scalar size_t size,
 scalar size_t nobj,
 scalar FILE* stream) ;
generic scalar int fwrite (virtual void *virtual ptr,
 scalar size_t size,
 scalar size_t nobj,
 scalar FILE* stream) ;
generic virtual int printf (scalar char * scalar format,
 virtual ...) ;
generic virtual int sprintf (virtual char *virtual buff,
 scalar char * scalar format,
 virtual ...) ;
generic virtual int fprintf (scalar FILE *scalar file,
 scalar char * scalar format,
 virtual ...) ;

Standard Library (stdlib.aHr)

generic double atof (const char* s);
generic int atoi (const char* s);
generic long atol (const char* s);
generic double strtod (const char* s, char** endp);
generic long strtol (const char* s, char** endp,
 int base);

 132

generic unsigned long strtoul (const char* s, char** endp,
 int base);
generic scalar void abort (void);
generic scalar void exit (scalar int status);
generic int abs (int n);
generic long labs (long n);
generic div_t div (int num, int denom);
generic ldiv_t ldiv (long num, long denom);

String Routines (string.aHr)

generic char* strcpy (char* s, char* ct);
generic char* stnrcpy (char* s, char* ct, int n);
generic char* strcat (char* s, char* ct);
generic char* strncat (char* s, char* ct, int n);
generic int strcmp (char* cs, char* ct);
generic int strncmp (char* cs, char* ct, int n);
generic char* strchr (char* cs, char c);
generic char* strrchr (char* cs, char c);
generic size_t strspn (char* cs, char* ct);
generic size_t strcspn (char* cs, char* ct);
generic char* strpbrk (char* cs, char* ct);
generic char* strstr (char* cs, char* ct);
generic size_t strlen (char* cs);
generic char* strerror (int n);
generic char* strtok (char* s, char* ct);
generic void* memcpy (void* s, void* ct, int n);
generic void* memmove (void* s, void* ct, int n);
generic int memcmp (void* cs, void* ct, int n);
generic void* memchr (void* cs, int c, int n);
generic void* memset (void* s, int c, int n);

Time Routines (time.aHr)

(The libraries for 'time' are not currently implemented.)

 133

More Applications – Discrete Cosine Transform

One-Dimensional Discrete Cosine Transform

In the image, video, voice and signal processing fields, a discrete cosine
transform (DCT) is commonly used to compress data. In digital image
processing, the DCT is used to compress an image and is an important part of
the JPEG standard.

The data compression process is fairly straightforward. A DCT is performed
and creates a transform coefficient matrix. Only the most significant coefficients
are stored or transmitted. Data can be recreated using the inverse transform
with the stored coefficients. However, unless all of the coefficients are used, this
method is lossy. The tradeoff between size and quality is controlled by the
amount of coefficients used.

 We will begin by looking at the implementation of the one-
dimensional DCT. There are many similar formulas for DCTs. Each has its
advantages. For this section we use the recursive definition for the one-
dimensional DCT as shown below:

.1,...,1,0

],)
2
1(cos[)1()1(2)(

1

0

−=

+−−−= ∑
−

=

Nk
N

nknNy
N

kY
N

n

k
k

πγ

Similarly, the inverse discrete cosine transform (IDCT) is:

otherwise. ,1or ,0 if
2
1

.1,...,1,0

],)
2
1)(1sin[()1()1()(

1

0

===

−=

++−−−= ∑
−

=

kk

N

k

n

k

Nn
N

nkkNyny

γγ

π

In the following sections, we will look at many different ways of implementing
the two-dimensional transform in aCe. While many of the programs are similar,
the differences are noteworthy.

Program B.1 shows one method of implementing the DCT and IDCT using
aCe.

/*

 134

Discrete Cosine Transform (DCT) and Inverse Discrete Cosine Transform
(IDCT)

__

Maurice.F. Aburdene
Andrew Marbach
John E. Dorband
5/30/03

DCT formula for N samples in y[]:

Y(k)= 2/N * Gk * (-1)^k * SUM(n=0->N-1){ y(N-1-n) * cos [k * (n+0.5) *

pi/N] }

 Gk = 1/2, if k = 0; Gk = 1, otherwise;
 k= 0,1, ... N-1;

IDCT formula for N samples in Y[]:

y(k)= (-1)^k * SUM (n=0->N-1){ Y(N-1-n) * sin [(k + 0.5) * (n+1) * pi/N]

}
 k= 0,1, ... N-1;

*/

#include <stdio.aHr>
#include <math.aHr>
#define N 4 /*defines number of samples*/
#define PI (4*atan(1))

threads y[N];
threads Y[N];

int main (){

 y double temp, sum=0.0, value=0.0, data;
 y int n; /*initializes bundle variables*/
 Y double temp, sum=0.0, value=0.0;
 Y int n;

 y.{
 data = (float) $$i; /*initializes data*/
 }

 printf("\n\n y[]= { ");
 y.{ printf("%f\t", data); }/*print data in y[]*/
 printf("}\n\n");

/*_____________________Start DCT______________________*/

 Y.{
 value = 2./N; /*scaling factor*/
 value = value*pow(-1,$$i);

 if ($$i==0) /*gamma coefficient*/
 value=value * 0.5;

 for (n=0; n<N; n++){ /*loop to use all of the samples*/

 temp=y[N-1-n].(data); /*get y[] data, multiply by cos term*/

 temp=temp*cos($$i*(n+.5)*PI/(float)N);

 135

 sum = sum + temp; /*add iteration to the sum*/

 /* un-commment to test
 printf("Y[%d] n= %d temp=%f sum=%g\n", $$i,n,temp,sum);
 MAIN.{printf("\n");} */

 }

 value = value * sum; /*final value calculation*/

 }

 printf("DCT - \n Y[]= { ");
 Y.{ printf("%f\t", value); } /*print values of Y[]*/
 printf("}\n\n");

/*________________End DCT, Start IDCT__________________*/

 y.{
 value=pow(-1,$$i); /*scaling factor*/

 for (n=0; n<N; n++){ /*loop to use all samples*/

 temp=Y[N-1-n].(value); /*get y[] data, multiply by sine*/

 temp = temp * sin((n+1)*($$i+.5)*PI/(float)N);

 sum = sum + temp; /*add iteration to sum*/

 /* un-commment to test
 printf("y[%d] n= %d temp=%f sum=%g\n", $$i,n,temp,sum);
 MAIN.{printf("\n");} un-comment to test */

 }

 value = value * sum; /*final value calculation*/

 }

 printf("IDCT - \n y[]= { ");
 y.{ printf("%f\t", value); } /*print values of Y[]*/
 printf("}\n\n");

}

Program B.1: Uses a one-dimensional bundle of threads to perform a
discrete cosine transform and then inverts back using the
inverse discrete cosine transform.

Program B.1 uses two bundles of threads (y and Y) to represent the original

data and the transform coefficients respectively. Each transform coefficient
thread ‘gets’ the data from each sample data thread. This particular algorithm is
fairly simple and can be improved upon. Improvement will come in the form of
number of multiplications and additions or in terms of thread communications.

 136

The output of program B.1 can be seen below. Notice that the inverse of the
transform is the same as the original values. In this case, all coefficients are used
in the IDCT and the conversion is lossless.

 y[]= { 0.000000 1.000000 2.000000 3.000000}

DCT -
 Y[]= { 1.500000 -1.577161 0.000000 -0.112085}

IDCT -
 y[]= { -0.000000 1.000000 2.000000 3.000000}

Two-dimensional Discrete Cosine Transform

To compute the two-dimensional DCT of an image, first split the data array
into its constituent rows. Next, a one-dimensional DCT is performed on each of
the rows. Then another one-dimensional DCT is performed on the columns of the
coefficients. Finally, the data is recombined to create the two-dimensional
transform matrix.

Figure B.2: The two-dimensional DCT process on an 8x8 image.

Program B.2 shows a way to implement both the two-dimensional DCT and

the two-dimensional inverse DCT. The program uses functions to call a one-
dimensional DCT and IDCT multiple times. A one-dimensional DCT is set up to
work across the rows. In order to perform the vertical transform, the data values
are transposed. Once the vertical transform is performed, the results are
transposed back to the original position. The process is similar for the IDCT.

In the following sections (B.2 – B.7) we will present five additional ways of
performing a two-dimensional DCT. The method presented in program B. 2 uses
two threads, each using functions to perform the operations.

 137

/* 2-D Discrete Cosine Transform and Inverse DCT
aCe Program

Maurice F. Aburdene
Andrew J. Marbach
John E. Dorband

DCT formula for N samples in y[]:

Y(k)= 2/N * Gk * (-1)^k * SUM(n=0->N-1){ y(N-1-n) * cos [k * (n+0.5)
* pi/N] }

 Gk = 1/2, if k = 0; Gk = 1, otherwise;
 k= 0,1, ... N-1;

IDCT formula for N samples in Y[]:

y(k)= (-1)^k * SUM (n=0->N-1){ Y(N-1-n) * sin [(k + 0.5) * (n+1) * pi/N]

}
 k= 0,1, ... N-1;

*/
#include <stdio.aHr>
#include <math.aHr>
#define N 4
#define PI (4*atan(1))
threads y[N][N];
threads Y[N][N];

/*initialize bundle variables*/
y double temp, sum, value=0.0, data=0.0;
y int n;
Y double temp, sum, value=0.0;
Y int n;

generic void dataprint (double input) {

 /* prints out formatted data values*/
 printf("%f\t%c", input,($$ix[0]==(N-1))?'\n':' ');
 MAIN.{printf("\n\n");}
}

generic double inputdata () {

 /*Generates values*/
 double temp;
 temp=$$i;
 return temp;
}

Y double dct (){

 sum=0.0;

 /*scaling factor calculation*/
 value = 2./N;
 value = value*pow(-1,$$i%N);

 /*gamma coefficient calculation*/
 if ($$i%N==0)
 value=value * 0.5;

 138

 /*loop to use all of the samples*/
 for (n=0; n<N; n++){

 /*get y[] data, multiply by cos term */
 temp=y[$$i/N][N-1-n].(data);
 temp=temp*cos(($$i%N)*(n+.5)*PI/(float)N);

 /*add current iteration to the sum*/
 sum = sum + temp;

 }
 /*final value calculation*/
 value = value * sum;
 return value;

}

y double idct() {
 sum=0.0;
 /*scaling factor calculation*/
 value=pow(-1,$$i);
 /*loop to use all of the sample points*/
 for (n=0; n<N; n++){

 /*get y[] data, multiply by sine value*/
 temp=Y[$$i/N][N-1-n].(value);

 temp = temp * sin ((n+1)*(($$i%N)+.5)*
PI/(float)N);

 /*add current iteration to the sum*/
 sum = sum + temp;

 }

 /*final value calculation*/
 value = value * sum;
 return value;

}

int main (){

 y.{
 /*initialize, set, and print data*/
 data=inputdata();
 MAIN.{printf("Original Data=\n");}
 dataprint(data);
 }
 Y. {
 /*first dct on rows of data, save as data*/
 y[$$i/N][$$i%N].data=dct();

 /*transpose rows of data*/
 y.{data = y[$$ix[0]][$$ix[1]].data;}

 /*perform second dct on columns*/
 dct();

 /*transpose data and value back*/
 y.{data = y[$$ix[0]][$$ix[1]].data;}
 value=Y[$$ix[0]][$$ix[1]].value;

 /*print out Y.values after DCT_2D*/
 MAIN.{printf("DCT_2D(y)=\n");}
 dataprint(value);
 }

 139

 y. {
 /*perform first idct*/
 Y[$$i/N][$$i%N].value=idct();

 /*transpose values in Y*/
 Y.{value = y[$$ix[0]][$$ix[1]].value;}

 /*perform second idct*/
 idct();

 /*transpose values in Y back*/
 Y.{value = y[$$ix[0]][$$ix[1]].value;}

 /*print out y.values*/
 MAIN.{printf("IDCT_2D(Y)=\n");}
 dataprint(value);
 }
}

Program B.2: A two-dimensional DCT program using 2-two-dimensional
bundles calling a bundle specific functions.

The output of program B.2.

Original Data=
0.000000 1.000000 2.000000 3.000000
4.000000 5.000000 6.000000 7.000000
8.000000 9.000000 10.000000 11.000000
12.000000 13.000000 14.000000 15.000000

DCT_2D(y)=
7.500000 -1.577161 -0.000000 -0.112085
-6.308644 0.000000 0.000000 -0.000000
0.000000 -0.000000 -0.000000 0.000000
-0.448342 -0.000000 0.000000 -0.000000

IDCT_2D(Y)=
0.000000 1.000000 2.000000 3.000000
4.000000 5.000000 6.000000 7.000000
8.000000 9.000000 10.000000 11.000000
12.000000 13.000000 14.000000 15.000000

Two-Dimensional Discrete Cosine Transform

In the second version of the two-dimensional DCT there is just one two-dimensional
bundle, but each thread has two arrays of data. One is used for the original data and
one for the transform. This method copies data from one thread to all of the threads as
well as uses system constants to access other threads. Look for the $$ix [] calls in the
program where the first version used only modulus and division.

 140

/* 2-D Discrete Cosine Transform and Inverse DCT
aCe Program

Maurice F. Aburdene
Andrew J. Marbach
John E. Dorband

1D DCT formula for N samples in y[]:

Y(k)= 2/N * Gk * (-1)^k * SUM(n=0->N-1){ y(N-1-n) * cos [k * (n+0.5)
* pi/N] }

 Gk = 1/2, if k = 0; Gk = 1, otherwise;
 k= 0,1, ... N-1;

1D IDCT formula for N samples in Y[]:

y(k)= (-1)^k * SUM (n=0->N-1){ Y(N-1-n) * sin [(k + 0.5) * (n+1) * pi/N]

}
 k= 0,1, ... N-1;

*/

#include <stdio.aHr>
#include <math.aHr>

#define N 4
#define PI (4*atan(1))

threads Y[N][N];

/*initialize bundle variables*/

generic double inputdata(void) {
 /*Generates values*/
 return $$i ;
}

generic void dataprint(double input)
 /* prints out formatted data values*/
 printf("%f\t%c", input,($$ix[0]==(N-1))?'\n':' ');
 MAIN.{ printf("\n\n"); }
}

generic double DCTrow (double IMAGE[N][N])
{

 double temp, sum=0.0, value;
 int i;

 /*scaling factor calculation*/
 value = 2.0/N;
 value = value*pow(-1,$$ix[0]);

 /*gamma coefficient calculation*/
 if ($$i%N==0)
 value=value * 0.5;

 141

 /*loop to use all of the samples*/
 for (i=0; i<N; i++){

 /*get y[] data, multiply by cos term */
 temp=IMAGE[$$ix[1]][N-1-i];
 temp=temp*cos(($$ix[0])*(i+.5)*PI/(float)N);

 /*add current iteration to the sum*/
 sum = sum + temp;

 }

 /*final value calculation*/
 value = value * sum;

 return value;
}

generic double IDCTrow (double IMAGE[N][N])
{

 double temp, sum=0.0, value;
 int i;

 /*scaling factor calculation*/
 value = pow(-1,$$ix[0]);

 /*loop to use all of the samples*/
 for (i=0; i<N; i++){

 /*get y[] data, multiply by cos term*/
 temp=IMAGE[$$ix[1]][N-1-i];
 temp = temp * sin((i+1.0) * (($$ix[0])+.5) * (PI/(float)N));

 /*add current iteration to the sum*/
 sum = sum + temp;
 }

 /*final value calculation*/
 value = value * sum;

 return value;
}

void main (){

 Y double image [N][N];
 Y double image2 [N][N];
 Y double value=0.0;
 Y double data;
 Y int i,j;

 /*initialize, set, and print data*/
 Y.{
 data = inputdata();
 dataprint(data);

 /* copies data to all threads */
 for (i=0; i<N; i++){
 for (j=0; j<N; j++){
 image[i][j] = Y[i][j].data;

 142

 }
 }

 /* compute a DCT value for each thread */
 value=DCTrow(image);

 /* transpose values */
 value = Y[$$ix[0]][$$ix[1]].value;

 /* copies data to all threads */
 for (i=0; i<N; i++){
 for (j=0; j<N; j++){
 image2[i][j] = Y[i][j].value;
 }
 }

 /* compute a DCT value for each thread */
 value = DCTrow (image2);
 /* transpose values */
 value = Y[$$ix[0]][$$ix[1]].value;
 /* print result of 2D DCT */
 dataprint(value);
 }

 Y.{

 /* copies data to all threads */
 for (i=0; i<N; i++){
 for (j=0; j<N; j++){
 image2[i][j] = Y[i][j].value;
 }
 }

 /* compute an inverse DCT value for each thread */
 data=IDCTrow(image2);
 /* transpose values */
 data = Y[$$ix[0]][$$ix[1]].data;

 /* copies data to all threads */
 for (i=0; i<N; i++){
 for (j=0; j<N; j++){
 image2[i][j] = Y[i][j].data;
 }
 }

 /* compute an inverse DCT value for each thread */
 data=IDCTrow(image2);
 /* transpose values */
 data = Y[$$ix[0]][$$ix[1]].data;
 /* print result of inverse 2D DCT*/
 dataprint(data);
}

Program B.3: A two-dimensional DCT program using 2 two-dimensional
bundles calling bundle specific functions.

The output of program B.3 is similar to program B.2. The first data section is the original
data, the second section is the transform coefficients and the final section is the inverse
of the transform coefficients.

0.000000 1.000000 2.000000 3.000000
4.000000 5.000000 6.000000 7.000000
8.000000 9.000000 10.000000 11.000000

 143

12.000000 13.000000 14.000000 15.000000

7.500000 -1.577161 -0.000000 -0.112085
-6.308644 0.000000 0.000000 -0.000000
0.000000 -0.000000 -0.000000 0.000000
-0.448342 -0.000000 0.000000 -0.000000

0.000000 1.000000 2.000000 3.000000
4.000000 5.000000 6.000000 7.000000
8.000000 9.000000 10.000000 11.000000
12.000000 13.000000 14.000000 15.000000

Two-Dimesnional Discrete Cosine Transform

The third method of performing a two-dimensional DCT uses two bundles, each with two
arrays of stored data. This method also used relative addressing.

/* 2-D Discrete Cosine Transform and Inverse DCT
aCe Program

Maurice F. Aburdene
Andrew J. Marbach
John E. Dorband
__

1D DCT formula for N samples in y[]:

Y(k)= 2/N * Gk * (-1)^k * SUM(n=0->N-1){ y(N-1-n) * cos [k * (n+0.5)
* pi/N] }

 Gk = 1/2, if k = 0; Gk = 1, otherwise;
 k= 0,1, ... N-1;
__

1D IDCT formula for N samples in Y[]:

y(k)= (-1)^k * SUM (n=0->N-1){ Y(N-1-n) * sin [(k + 0.5) * (n+1) * pi/N]

}
 k= 0,1, ... N-1;
__
*/

#include <stdio.aHr>
#include <math.aHr>

#define N 4
#define PI (4*atan(1))

threads Y[N][N];
threads y[N][N];

/*initialize bundle variables*/

 144

generic double inputdata(void) {
 /*Generates values*/
 return $$i ;
}

generic void dataprint(double input) {

 /* prints out formatted data values*/
 printf("%f\t%c", input,($$ix[0]==(N-1))?'\n':' ');
 MAIN.{ printf("\n\n"); }
}

generic double DCTrow (double IMAGE[N][N])
{

 double temp, sum=0.0, value;
 int i;

 /*scaling factor calculation*/
 value = 2.0/N;
 value = value*pow(-1,$$ix[0]);

 /*gamma coefficient calculation*/
 if ($$i%N==0)
 value=value * 0.5;

 /*loop to use all of the samples*/
 for (i=0; i<N; i++){

 /*get y[] data, multiply by cos term */
 temp=IMAGE[$$ix[1]][N-1-i];
 temp=temp*cos(($$ix[0])*(i+.5)*PI/(float)N);

 /*add current iteration to the sum*/
 sum = sum + temp;
 }

 /*final value calculation*/
 value = value * sum;

 return value;
}

generic double IDCTrow (double IMAGE[N][N])
{

 double temp, sum=0.0, value;
 int i;

 /*scaling factor calculation*/
 value = pow(-1,$$ix[0]);

 /*loop to use all of the samples*/
 for (i=0; i<N; i++){

 /*get y[] data, multiply by cos term */
 temp=IMAGE[$$ix[1]][N-1-i];
 temp = temp * sin((i+1.0) * (($$ix[0])+.5) * (PI/(float)N));

 /*add current iteration to the sum*/
 sum = sum + temp;
 }

 /*final value calculation*/
 value = value * sum;

 145

 return value;
}

void main (){

 Y double value=0.0;

 /*initialize, set, and print data*/
 Y.{
 double image [N][N];
 double image2 [N][N];
 double data;
 int i,j;

 data = inputdata();
 dataprint(data);

 /* copies data to all threads */
 for (i=0; i<N; i++){
 for (j=0; j<N; j++){
 image[i][j] = Y[i][j].data;
 }
 }

 /* compute a DCT value for each thread */
 value=DCTrow(image);

 /* transpose values */
 value = Y[$$ix[0]][$$ix[1]].value;

 /* copies data to all threads */
 for (i=0; i<N; i++){
 for (j=0; j<N; j++){
 image2[i][j] = Y[i][j].value;
 }
 }

 /* compute a DCT value for each thread */
 value = DCTrow (image2);
 /* transpose values */
 value = Y[$$ix[0]][$$ix[1]].value;
 /* print result of 2D DCT */
 dataprint(value);
 }

 y.{
 double image [N][N];
 double image2 [N][N];
 double value=0.0;
 double data;
 int i,j;

 /* copies data to all threads */
 for (i=0; i<N; i++){
 for (j=0; j<N; j++){
 image2[i][j] = Y[i][j].value;
 }
 }

 /* compute an inverse DCT value for each thread */
 data=IDCTrow(image2);
 /* transpose values */
 data = y[$$ix[0]][$$ix[1]].data;

 /* copies data to all threads */
 for (i=0; i<N; i++){
 for (j=0; j<N; j++){

 146

 image2[i][j] = y[i][j].data;
 }
 }

 /* compute an inverse DCT value for each thread */
 data=IDCTrow(image2);
 /* transpose values */
 data = y[$$ix[0]][$$ix[1]].data;
 /* print result of inverse 2D DCT*/
 dataprint(data);
 }

}

Program B.4: A fourth two-dimensional DCT program using two bundles
each with two arrays of data.

The output of program B.4 is the same as program B.3.

2-D Discrete Cosine Transform Version 4

 The fourth version of the DCT program uses just one bundle of NXN threads each
containing two arrays with N threads. This program uses ‘for’ loops to copy the data
from one thread to all threads. Here is program B.5.

/* 2-D Discrete Cosine Transform and Inverse DCT
aCe Program

Maurice F. Aburdene
Andrew J. Marbach
John E. Dorband
__

1D DCT formula for N samples in y[]:

Y(k)= 2/N * Gk * (-1)^k * SUM(n=0->N-1){ y(N-1-n) * cos [k * (n+0.5)
* pi/N] }

 Gk = 1/2, if k = 0; Gk = 1, otherwise;
 k= 0,1, ... N-1;
__

1D IDCT formula for N samples in Y[]:

y(k)= (-1)^k * SUM (n=0->N-1){ Y(N-1-n) * sin [(k + 0.5) * (n+1) * pi/N]

}
 k= 0,1, ... N-1;
__
*/

#include <stdio.aHr>
#include <math.aHr>

#define N 4

 147

#define PI (4*atan(1))

threads Y[N][N];

/*initialize bundle variables*/

generic double inputdata(void) {
 /*Generates values*/
 return $$i ;
}

generic void dataprint(double input) {

 /* prints out formatted data values*/
 printf("%f\t%c", input,($$ix[0]==(N-1))?'\n':' ');
 MAIN.{ printf("\n\n"); }
}

generic double DCTrow (double IMAGE[N])
{

 double temp, sum=0.0, value;
 int i;

 /*scaling factor calculation*/
 value = 2.0/N;
 value = value*pow(-1,$$ix[0]);

 /*gamma coefficient calculation*/
 if ($$ix[0]==0)
 value=value * 0.5;

 /*loop to use all of the samples*/
 for (i=0; i<N; i++){

 /*get y[] data, multiply by cos term*/
 temp=IMAGE[N-1-i];
 temp=temp*cos(($$ix[0])*(i+.5)*PI/(float)N);

 /*add current iteration to the sum*/
 sum = sum + temp;
}

 /*final value calculation*/
 value = value * sum;

 return value;
}

generic double IDCTrow (double IMAGE[N])
{
 double temp, sum=0.0, value;
 int i;

 /*scaling factor calculation*/
 value = pow(-1,$$ix[0]);

 /*loop to use all of the samples*/
 for (i=0; i<N; i++){

 /*get y[] data, multiply by cos term*/
 temp=IMAGE[N-1-i];
 temp = temp * sin((i+1.0) * ($$ix[0]+.5) * (PI/(float)N));

 /*add current iteration to the sum*/
 sum = sum + temp;

 148

 }

 /*final value calculation*/
 value = value * sum;
 return value;
}

void main (){

 /*initialize, set, and print data*/
 Y.{
 double image [N];
 double image2 [N];
 double value=0.0;
 double data;
 int i,j;

 data = inputdata();
 dataprint(data);

 /* copies data to all threads */
 for (j=0; j<N; j++){
 image[j] = Y[$$ix[1]][j].data;
 }

 /*
 for (j=0; j<N; j++){
 dataprint(image[j]);
 }
 */

 /* compute a DCT value for each thread */
 value=DCTrow(image);

 /* copies transposed data to all threads */
 for (j=0; j<N; j++){
 image2[j] = Y[j][$$ix[1]].value;
 }

 /* compute a DCT value for each thread */
 value = DCTrow (image2);
 /* transpose values */
 value = Y[$$ix[0]][$$ix[1]].value;
 /* print result of 2D DCT */
 dataprint(value);

 /* INVERSE DCT */

 /* copies data to all threads */
 for (j=0; j<N; j++){
 image2[j] = Y[$$ix[1]][j].value;
 }

 /* compute an inverse DCT value for each thread */
 data=IDCTrow(image2);

 /* copies transposed data to all threads */
 for (j=0; j<N; j++){
 image2[j] = Y[j][$$ix[1]].data;
 }

 /* compute an inverse DCT value for each thread */
 data=IDCTrow(image2);
 /* transpose values */
 data = Y[$$ix[0]][$$ix[1]].data;
 /* print result of inverse 2D DCT*/
 dataprint(data);

 149

 }
}

Program B.5: A fifth two-dimensional DCT program.

The output of program B.6 is similar to the output of program B.3.

Two-Dimensional Discrete Cosine Transform

The fifth method uses one bundle with two-two-dimensional arrays of data. Program B.6
also uses relative addressing.

/* 2-D Discrete Cosine Transform and Inverse DCT
/* 2-D Discrete Cosine Transform and Inverse DCT
aCe Program

Maurice F. Aburdene
Andrew J. Marbach
John E. Dorband
__
1D DCT formula for N samples in y[]:

Y(k)= 2/N * Gk * (-1)^k * SUM(n=0->N-1){ y(N-1-n) * cos [k * (n+0.5)
* pi/N] }

 Gk = 1/2, if k = 0; Gk = 1, otherwise;
 k= 0,1, ... N-1;
__

1D IDCT formula for N samples in Y[]:

y(k)= (-1)^k * SUM (n=0->N-1){ Y(N-1-n) * sin [(k + 0.5) * (n+1) * pi/N]

}
 k= 0,1, ... N-1;
__
*/

#include <stdio.aHr>
#include <math.aHr>

#define N 4
#define PI (4*atan(1))

threads Y[N][N];

/*initialize bundle variables*/

generic double inputdata(void) {
 /*Generates values*/
 return $$i ;
}

generic void dataprint(double input) {

 150

 /* prints out formatted data values*/
 printf("%f\t%c", input,($$ix[0]==(N-1))?'\n':' ');
 MAIN.{ printf("\n\n"); }
}

generic double DCTrow (double IMAGE[N])
{

 double temp, sum=0.0, value;
 int i;

 /*scaling factor calculation*/
 value = 2.0/N;
 value = value*pow(-1,$$ix[0]);

 /*gamma coefficient calculation*/
 if ($$ix[0]==0)
 value=value * 0.5;

 /*loop to use all of the samples*/
 for (i=0; i<N; i++){

 /*get y[] data, multiply by cos term */
 temp=IMAGE[N-1-i];
 temp=temp*cos(($$ix[0])*(i+.5)*PI/(float)N);

 /*add current iteration to the sum*/
 sum = sum + temp;
 }

 /*final value calculation*/
 value = value * sum;

 return value;
}

generic double IDCTrow (double IMAGE[N])
{

 double temp, sum=0.0, value;
 int i;

 /*scaling factor calculation*/
 value = pow(-1,$$ix[0]);

 /*loop to use all of the samples*/
 for (i=0; i<N; i++){

 /*get y[] data, multiply by cos term*/
 temp=IMAGE[N-1-i];
 temp = temp * sin((i+1.0) * ($$ix[0]+.5) * (PI/(float)N));

 /*add current iteration to the sum*/
 sum = sum + temp;
 }

 /*final value calculation*/
 value = value * sum;

 return value;
}

void main (){

 151

 /*initialize, set, and print data*/
 Y.{
 double image [N];
 double image2 [N];
 double value=0.0;
 double data;
 int i,j;

 data = inputdata();
 dataprint(data);

 /* copies data to all threads */
 for (j=0; j<N; j++){
 image[j] = Y[$$ix[1]][j].data;
 }

 /*
 for (j=0; j<N; j++){
 dataprint(image[j]);
 }
 */

 /* compute a DCT value for each thread */
 value=DCTrow(image);
 dataprint(value);

 /* transpose values */
 value = Y[$$ix[0]][$$ix[1]].value;

 /* copies data to all threads */
 for (j=0; j<N; j++){
 image2[j] = Y[$$ix[1]][j].value;
 }

 /* compute a DCT value for each thread */
 value = DCTrow (image2);
 /* transpose values */
 value = Y[$$ix[0]][$$ix[1]].value;
 /* print result of 2D DCT */
 dataprint(value);

 /* INVERSE DCT */

 /* copies data to all threads */
 for (j=0; j<N; j++){
 image2[j] = Y[$$ix[1]][j].value;
 }

 /* compute an inverse DCT value for each thread */
 data=IDCTrow(image2);
 /* transpose values */
 data = Y[$$ix[0]][$$ix[1]].data;

 /* copies data to all threads */
 for (j=0; j<N; j++){
 image2[j] = Y[$$ix[1]][j].data;
 }

 /* compute an inverse DCT value for each thread */
 data=IDCTrow(image2);
 /* transpose values */
 data = Y[$$ix[0]][$$ix[1]].data;
 /* print result of inverse 2D DCT*/
 dataprint(data);
 }
}

 152

Program B.6: A fifth two-dimensional DCT program using one bundle,
with two-two-dimensional arrays per thread..

The output of program B.6 is similar to program B.3.

 153

 More Applications

Parameter Passing

In this chapter, more applications using aCe are presented. First we present
a program that uses a call by reference routine.

/* Call by Reference
aCe Program

Maurice F. Aburdene
Andrew J. Marbach
*/

#include <stdio.aHr>
#define N 4
threads A[N];

generic void modify (generic(OTHER),OTHER int *b){

 /*modify *b, and print*/
 OTHER.{
 *b=$$i+1;
 }
}

int main () {

 A int a=0; /*initialize a to 0*/
 A.{printf("%d\t",a);} /*print a*/
 printf("\n");

 modify(A,&a); /*modify a in function, call by reference*/

 printf("\n"); /*print modified a*/
 A.{printf("%d\t",a);}
}

Program C.1: Uses a function to modify a passed parameter.

This program is pretty straight forward. The modify routine is passed a value
by reference and then modifies it. Since the parameter is passed by reference,
the value is changed in the main program as well. The output for program C.1 is
below.

0 0 0 0
1 2 3 4

 154

BMP Transformations

This application takes a BMP image file, reads the data into bundle variables.
The image is transformed and then printed to a new file. The transformation
function uses universal addressing. An array of chars are used to hold the
header information, while the transformation is taking place on the rest of the
data. This program works with 8-bit (256 color) bitmaps. Char’s are used to
store the information because they store 8-bits of information.

/*BMP Transformation Program
aCe program

Andrew J. Marbach
7.01.03
*/

#include <stdio.aHr>
#include <stdlib.aHr>
#include <math.aHr>
#define X 200
#define COLORS 256

threads Y[X][X];

generic void charprint(unsigned char input) {

 /* prints out formatted data values*/
 printf("%i\t%c", input,($$ix[0]==(X-1))?'\n':' ');
 MAIN.{printf("\n\n");}
}

generic char rotateccw (generic(Y), Y unsigned char value) {

 /*rotates the data stored in the bundle counter-clockwise*/
 unsigned char temp;
 temp=Y[X-$$ix[0]-1][$$ix[1]].value;
 return temp;
}

generic char rotatecw (generic(Y), Y unsigned char value) {

 /*rotates the data stored in the bundle counter-clockwise*/
 unsigned char temp;
 temp=Y[$$ix[0]][X-$$ix[1]-1].value;
 return temp;
}

generic char horizflip (generic(Y), Y unsigned char value) {

 /*flips the data stored in the bundle horizontally*/
 unsigned char temp;

 155

 temp=Y[$$ix[1]][X-$$ix[0]-1].value;
 return temp;
}

generic char vertflip (generic(Y), Y unsigned char value) {

 /*flips the data stored in the bundle vertically*/
 unsigned char temp;
 temp=Y[X-$$ix[1]-1][$$ix[0]].value;
 return temp;
}

int main (){

 /*initialize variables*/
 FILE *fid;
 Y unsigned char image, vert, horiz, cw, ccw;
 unsigned char header[(54+COLORS*4)];

 /*open original image file*/
 fid=fopen("grads.bmp","r+");

 /*reader header information*/
 fread(&header, (54+4*COLORS),1,fid);

 Y.{
 /*Open original image, load in to image*/
 fread(&image,sizeof(image),1,MAIN.fid);
 charprint(image);

 /*perform transformations*/
 cw=rotatecw(Y,image);
 ccw=rotateccw(Y,image);
 vert=vertflip(Y,image);
 horiz=horizflip(Y,image);
 }

 fclose(fid);

 /*write the horizontally fliped image to a file*/
 fid=fopen("gradshoriz.bmp","w+");
 fwrite (header,sizeof(header),1,fid);
 Y.{fwrite(&horiz,sizeof(horiz),1,MAIN.fid);}
 fclose(fid);

 /*write the vertically fliped image to a file*/
 fid=fopen("gradsvert.bmp","w+");
 fwrite (header,sizeof(header),1,fid);
 Y.{fwrite(&vert,sizeof(vert),1,MAIN.fid);}
 fclose(fid);

 /*write the clockwise rotated image to a file*/
 fid=fopen("gradscw.bmp","w+");
 fwrite (header,sizeof(header),1,fid);
 Y.{fwrite(&cw,sizeof(cw),1,MAIN.fid);}
 fclose(fid);

 /*write the couter-clockwise image to a file*/
 fid=fopen("gradsccw.bmp","w+");
 fwrite (header,sizeof(header),1,fid);
 Y.{fwrite(&ccw,sizeof(ccw),1,MAIN.fid);}
 fclose(fid);

 return 0;
}

 156

Program C.2: Reads in a BMP image file, transforms the image, writes
transformed images to a file.

Sample input and output:

grads.bmp

gradsccw.bmp gradscw.bmp

 157

gradshoriz.bmp gradsvert.bmp

BMP and Discrete Cosine Transform

This application combines the use of BMP files as in the previous program,
but also adds in DCT functionality. Program C.3 uses a cutoff to choose at what
point the transform coefficients should be dropped. While this algorithm does not
save space, dropping the coefficient shows how lossy the image would be when
neglecting coefficients below the cutoff.

/* BMP & DCT-IDCT Program
aCe program

Andrew J. Marbach
7.1.03
*/

#include <stdio.aHr>
#include <stdlib.aHr>
#include <math.aHr>
#define X 200
#define COLORS 256
#define PI (4*atan(1))
#define CUTOFF .001
threads Y[X][X];
FILE *fid;

generic void charprint(unsigned char input) {

 /* prints out formatted data values*/
 printf("%i\t%c", input,($$ix[0]==(X-1))?'\n':' ');
 MAIN.{printf("\n\n");}
}

 158

generic double DCTrow (generic(Y), Y double value)
{
 double temp, sum=0., value;
 int n;

 /*scaling factor calculation*/
 value = 2./X;
 value = value*pow(-1,$$i%X);

 /*gamma coefficient calculation*/
 if ($$i%X==0)
 value=value * 0.5;

 /*loop to use all of the samples*/
 for (n=0; n<X; n++){

 /*get y[] data, multiply by cos term */
 temp=Y[$$i/X][X-1-n].value;
 temp=temp*cos(($$i%X)*(n+.5)*PI/(float)X);

 /*add current iteration to the sum*/
 sum = sum + temp;

 }
 /*final value calculation*/
 value = value * sum;
 return value;
}

generic double IDCTrow(generic(Y), Y double value) {

 double temp, sum=0., value;
 int n;

 /*scaling factor calculation*/
 value=pow(-1,$$i);

 /*loop to use all of the sample points*/
 for (n=0; n<X; n++){

 /*get y[] data, multiply by sine value*/
 temp=Y[$$i/X][X-1-n].(value);
 temp = temp * sin((n+1)*(($$i%X)+.5)*PI/(float)X);

 /*add current iteration to the sum*/
 sum = sum + temp;

 }

 /*final value calculation*/
 value = value * sum;
 return value;
}

int main (){

 Y double transform, inverse=0;
 Y unsigned char image, outchar;
 Y unsigned int x;

 unsigned char rows, columns;
 unsigned char header[(54+COLORS*4)];

 fid=fopen("grads256.bmp","r+");
 fread(&header, (54+4*COLORS),1,fid);

 159

 Y.{

 /*Open original image load in to image*/
 fread(&image,sizeof(image),1,MAIN.fid);

 /*perform two dimensional DCT, with transposition*/
 transform = DCTrow(Y,(double)image);

 transform = Y[$$ix[0]][$$ix[1]].transform;
 transform = DCTrow(Y,transform);
 transform = Y[$$ix[0]][$$ix[1]].transform;

 /*drop insignificant transform coefficients*/
 if (fabs(transform) < CUTOFF)
 transform = 0.;

 /*perform two dimensional IDCT, with transposition*/
 inverse = IDCTrow(Y,transform);

 inverse = Y[$$ix[0]][$$ix[1]].inverse;
 inverse = IDCTrow(Y,inverse);
 inverse = Y[$$ix[0]][$$ix[1]].inverse;

 /*type cast inverse*/
 x=inverse+.5;
 }

 fclose(fid);
 /*openoutputfile, save header*/
 fid=fopen("newgrads256.bmp","w+");
 fwrite (header,sizeof(header),1,fid);

 Y.{
 outchar=x;
 /*write recreated image to a new file*/
 fwrite(&outchar,sizeof(outchar),1,MAIN.fid);
 }

 fclose(fid);

 return 0;
}

Program C.3: Reads in a BMP image file, performs DCT, removes some
coefficients, performs IDCT, writes new BMP file.

Sample outputs with various transform coefficient CUTOFF values:

 160

Original – CUTOFF = 0 CUTOFF = .001

CUTOFF = .01 CUTOFF = .1

CUTOFF = 1 CUTOFF = 10

 161

 162

References

Sources used for Most of the Tutorial (not cited)

[A] Dorband, John E. Architecture-Adaptive Computing Environment. NASA
GSFC. http://newton.gsfc.nasa.gov/aCe/. (31 July, 2002).

[B] Dordband, John E. and Aburdene, Maurice F. Architecture-Adaptive
Computing Environment: A Tool for Teaching Programming, Frontiers in
Education, 2002. FIE 2002. 32nd Annual, Volume 3, 2002. pg.. 247-252.

Other Sources Cited in the Tutorial

[1] Flynn, M., Some Computer Organizations and Their Effectiveness, IEEE

Trans. Comput., Vol. C-21, pg. 94, 1972.
[2] Iverson, K.E., A Programming Language, Wiley, New York, 1962.
[3] DAP-FORTRAN Language, International Computers Ltd., TP 6918.
[4] Reeves A.P., Bruner J.D., The Language Parallel Pascal and other

Aspects of the Massively Parallel Processor, School of Electrical
Engineering, Cornell University, December, 1982.

[5] Dorband, J.E., "MPP Parallel Forth", Proceeding of the First Symposium
on the Frontiers of Massively Parallel Scientific Computation, pg. 211-215,
1986.

[6] Rose, J., Steele, G., "C*: An Extended C Language for Data Parallel
Programming", Presented at the Second International Conference on
Supercomputing, May, 1987.

[7] Steele, G., Wholey, S., "Connection Machine Lisp: A Dialect of Common
Lisp for Data Parallel Programming," August, 1987.

[8] Hamet, L.E., Dorband, J.E., A Generic Fine-grained Parallel C,
Proceedings of the Second Symposium on the Frontiers of Massively
Parallel Computation, October 1988, Fairfax, VA, pg. 625-628.

[9] MPL (MasPar Programming Language) Reference Manual, MasPar
Computer Corp., Pt No. 9300-9034-00 Rev A2.

	Introducing Threads
	A First aCe Program
	
	
	
	Prints “Hello aCe World” once.

	Adding Threads to the First Program
	
	
	
	Creates four ‘A’ threads. Each thread prints “He

	Multi-dimensional Arrays of Threads
	
	
	A two-dimensional bundle of ‘B’ threads created b
	Creates a two-dimensional bundle of threads; each

	How many threads are in the bundle declared as follows?
	There are 2 x 7 x 20 = 280 threads.

	Bundles of Bundles of Threads
	
	
	‘A’ is a bundle of two threads, and a bundle of b
	‘A’ is a bundle of bundles of threads \(‘B’ and

	How many ‘D’ threads result from this threads dec
	There are 2x3x2x2 = 24 ‘D’ threads, 2x2 = 4 ‘B’ t

	Construct a diagram of the threads resulting from this declaration:
	Write the threads declaration indicated by the following diagrams.
	a.threads {Y[2],Z[3]} X[3];

	A Discussion of Parallel Programming
	Thread Storage
	Printing Stored Values
	
	
	
	Initializes and prints storage values for threads.

	Compiling and Executing aCe Programs
	Using any editor you choose, enter the “Hello Wor
	Repeat exercise 1.5 for any of the other programs listed so far in this chapter. The expected output for each program should appear wherever the programs are located in the chapter.
	Compile and run any of the programs listed so far

	Summary

	System Constants
	System Constants: An Initial Description
	Thread Identifiers -- $$i and $$ii
	
	
	
	Prints the number of each thread in each thread’s
	Prints the number of each thread in each thread’s

	System Constants for ‘MAIN’
	
	
	
	Prints system constants for ‘MAIN’.

	System Constants in One Dimension
	
	
	System constants for all bundles of threads created by the declaration threads A[4]; .

	Write an aCe program that creates a one-dimensional bundle of two threads. You can start with the program listed in section 2.3. Print out the system constants for each thread in the bundle. (You can print out both values of $$Name at a time, then bo
	
	
	Solution to exercise 2.1. Prints out system constants for all threads.

	Enter the program listed in the solution to exercise 2.1. Change the threads declaration so that it is two-dimensional. Execute the program, and study the output. What do you notice?
	Repeat exercise 2.2 for a threads declaration of three dimensions. Use different numbers of threads in each dimension.

	System Constants for Bundles of Bundles of Threads
	
	
	System constants for all bundles of threads created by the declaration threads {B[3][2]} A[2]; .

	Write a program to print out the system constants
	
	
	Solution to exercise 2.4. Prints out system constants for all threads. (There are bundles of bundles of threads in this program.)

	For each threads declaration listed in parts (a) through (f), determine the values of the system constants listed in (i) through (viii). Do this for the thread specified by name and index number ($$i).

	Thread Storage Revisited
	
	
	
	Uses system constants to give storage variables different values for each thread.

	Summary

	Thread Execution
	Operations
	Active and Inactive Threads
	
	
	
	Creates a bundle of threads and uses a while statement to make more and more of the threads inactive.

	The following program uses a loop to make threads inactive. For each iteration through the loop, list the active threads (by $$i).
	Write a program that creates a bundle of five threads. Then, use successive iterations through a conditional loop to make each thread of the bundle the only active thread for that iteration. For each iteration, print out the loop number and the logical
	
	
	Solution to exercise 3.2. Uses a for loop to mak

	Execution of Bundles of Bundles of Threads
	
	
	
	Demonstrates how parent threads control their sub-bundles. If a parent thread becomes inactive, then all of its sub-bundles become inactive.

	The bundles of threads declared by threads {B[2]} A[3];

	Using any text editor, enter this modified version of program 3.3. Then execute it. What do you notice? (Note: The thread bundles structure is the same as the structure in program 3.3.)

	The Execution Context
	In the following segment of code, explain what will happen, based on execution contexts.
	There are 3 main situations that could happen.

	In the following segment of code
	Write a segment of code that fulfills the following conditions:

	Input and Output (I/O)
	
	
	
	Prints the values of a variable to a file for each thread in a bundle, then reads the values from the file and assigns them to a new variable.

	Summary

	Thread Communication
	Thread Communication Within a Bundle of Threads
	
	
	An aCe ‘get’ operation.
	An aCe ‘put’ operation.
	Uses two different methods to compute the sum of the first seven integers.

	Write a program that uses thread communication \�
	
	
	Computes 9! twice using thread communication meth

	Communications Path Descriptions
	Identify the (a) communication expression, the (b) router expression, and the (c) remote expression in the following examples.

	Thread Communication Between Different Thread Bundles
	
	
	Bundles of threads declared by threads {B[3]} A[2];
	Shows the sources of values in the communication expression.
	
	Computation values for thread communication.

	What is wrong with the following code? (Hint: Look at the communication expression.)
	The router expression is incorrect. ‘b’ is a val

	Write a program to compute 9! using thread commun
	
	
	Uses thread communication between ‘MAIN’ and anot

	Write a program that creates a bundle of three threads. Then, print the system constants for that bundle without declaring an execution context for that bundle. It may be easiest to print out all system constants for each thread, one thread at a time,
	
	
	Uses thread communication to print system constants for a bundle of threads.

	Communications Path Descriptions for Communication Between Bundles
	Conditional Expressions
	
	
	
	Demonstrates modification of data of inactive thr

	Summary

	Path Descriptions
	Definition
	Absolute Addressing
	
	
	Bundles of threads created with the threads declaration
	The boldface path displays the path indicated by the absolute path description A[1].B[0].F[2].(f+1)

	Universal Addressing
	
	
	Thread bundles declared by
	The boldface path displays the path indicated by the universal path description C[0].E[2].e.
	Assigns $$i of the current ‘B’ thread to the ‘e’

	Relative Addressing
	
	
	Relative path description for .C.A[0].B[1].F[1].(f+1) from a local thread with absolute address A[0].C[0].E[0].
	Possible ‘F’ threads referred to by F[x3]. The s
	Possible ‘F’ threads referred to by B.[x2].F[x3].
	The ‘F’ thread referred to by A[x1].B[x2].F[x3],
	Relative path description for .A[5].B[3].F[7].(f+1) from a local thread with absolute address A[1].C[0].E[2].

	For the local thread with absolute address A[1].C[0].E[2], go through each portion of the relative address .A[5].B[3].F[7] (following the steps we outlined previously to compute the absolute address of the remote thread (A[0].B[0].F[1].)
	Using the same threads structure (declared by threads {{D[2],E[4]} C[1],{F[3]} B[2]} A[3];), fill in the table below. Refer to figure 5.10 for help.
	
	Thread bundles created by the declaration threads {{D[2],E[4]}C[1],{F[3]}B[2]}A[3];

	This exercise will help you understand how different relative addresses affect the same local thread. Let the numbered instructions guide you as you complete each part of the table that follows.
	a) A[0].B[0].F[0]

	This exercise will help you understand the effect of the same relative address on different local threads. Use the following threads declaration.
	
	Thread bundles created by the declaration threads{{D[1],E[5]}C[1],{F[3]}B[2]}A[3]

	a) A[0].C[0].E[0]

	Reduction Addressing
	Using any editor you choose, enter the following program.
	
	
	Demonstrates the use of reduction addressing.

	Each value of ‘a’ is equal to the value of the sm

	Experiment with various global reductions, making sure you understand what is going on in your programs.
	As a review of addressing types, can you identify the type of addressing for each of the following addresses?

	Summary

	More on Thread Communication
	Scatter and Gather Operations
	
	
	
	Demonstrates the flag in a scatter operation.

	Study the output of program 6.1. Can you predict
	If two or more local threads attempt to send values to the same remote thread, then the remote thread will receive the value from the local thread with the smallest $$i. The flag value for that smallest $$i will be 1 (since the value was received), an

	If, in program 4.5, sizeF was 2 instead of 3, and
	
	Bundles of threads created by the declaration

	No matter what relative address is used, as long as it is of the form .A[x1].B[x2].F[x3], the flag values are as follows.

	Pre-computed Paths
	
	
	
	Uses pre-computed paths to compute the sum of the nearest neighbors.

	Using Pre-Computed Paths to Build a Pascal Matrix
	
	
	
	Creates Pascal’s matrix using a two-dimensional b

	Structure of the bundle of ‘A’ threads created by
	Setting A[0][0].a = 1.
	Diagonal of active threads for the first time through the for loop in program 6.3.
	Values of ‘a’ for the ‘A’ threads after one pass
	Diagonals corresponding to the ‘A’ threads with �
	5x5 Pascal matrix created by program 6.3.

	Using any editor you choose, enter program 4.8. Copy the two printf statements from the end of the program, and paste them inside the for loop, after the terminating bracket of the if statement. Compile and execute the program to see how the Pascal mat

	Arrays of Paths and Path Pointers
	Summary

	Routines
	Bundle-Specific Routines
	
	
	
	Creates a one-dimensional bundle of threads and prints the system constants for that bundle.

	Write a program that uses bundle-specific routines to create and print a 6x6 Pascal matrix. (Hint: Refer to program 6.3 if you get stuck.)
	
	
	Uses simple bundle-specific routines to create a 6x6 Pascal matrix.

	Simple Generic Routines
	
	
	
	Uses generic routines to print out the system constants of bundles of bundles of threads.

	Bundle-Specific Routines Revisited
	
	
	
	Uses bundle-specific routines with generic bundle arguments to print out system constants of different bundles of threads.

	Complex Generic Routines
	
	
	
	Uses simple and complex generic routines to print system constants of different bundles of threads.

	Practice writing a variety of aCe routines. Either write your own new programs, or modify programs shown in the tutorial by replacing our code with bundle-specific or generic routines.
	Experiment with generic routines by writing your own programs, and observing what compiler errors result.

	The Virtual/Scalar Distinction
	Summary

	Thread Alignment
	Virtual Processor Alignment
	Realignment of Threads with Processors
	Summary

	Applications
	A Review of aCe
	Building a Binary Tree
	
	
	
	Uses a one-dimensional bundle of threads to create a binary tree. Uses pre-computed paths to sum the logical thread identifiers of each parent thread and all of its children.

	Demonstrates the structure of a binary tree created by program 9.1.

	Building a Ring
	
	
	
	Uses a one-dimensional bundle of threads and thread communication to create a ring structure.

	The ring structure created by program 9.2.
	Uses a bundle of threads to build a ring, and then uses an election algorithm for message passing in the ring.

	Conclusion
	
	
	
	Uses a one-dimensional bundle of threads to perform a discrete cosine transform and then inverts back using the inverse discrete cosine transform.

	Figure B.2: The two-dimensional DCT process on an 8x8 image.
	A two-dimensional DCT program using 2-two-dimensional bundles calling a bundle specific functions.
	A two-dimensional DCT program using 2 two-dimensional bundles calling bundle specific functions.
	A fourth two-dimensional DCT program using two bundles each with two arrays of data.
	A fifth two-dimensional DCT program.
	A fifth two-dimensional DCT program using one bundle, with two-two-dimensional arrays per thread..
	Uses a function to modify a passed parameter.
	Reads in a BMP image file, transforms the image, writes transformed images to a file.
	Reads in a BMP image file, performs DCT, removes some coefficients, performs IDCT, writes new BMP file.

